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Abstract
Mark-recapture analysis of populations is becoming an important tool in population biology.
Mark-recapture methods can be used to estimate transition probabilities among life-stages
from capture histories of marked individuals for which stages can be determined at each
sampling occasion. This method is called a multi-stage mark-recapture (MSMR) method.
In this thesis, I describe advances I made in the MSMR method and present analyses that
apply this method to actual data.

The advances I made in the MSMR method are motivated by a need to provide a link
between mark-recapture data and demographic models such as matrix population models
and integrodifference models. I resolve some issues that are commonly encountered during
sampling, such as the fact that the sex or life-stage of some individuals is unknown during
some sampling occasions and that individuals become unobservable during some life-stages.
I introduce a stage-structure that permits simple conversion of estimated transition proba-
bilities into a matrix population model. I describe an algorithm to simplify programming
for parameter estimation. I also introduce a method to estimate the distribution of dispersal
displacements (a dispersal kernel) from mark-recapture data.

I apply some of the methods described above to data of the North Atlantic right whale
(Eubalaena glacialis). The right whales are considered one of the most endangered mam-
mals. The current population size is about 300 in the northwestern Atlantic, and the
number is declining. I applied the multi-stage mark-recapture statistics to the 17-year in-
dividual sighting history data. Using the estimated transition probabilities, I constructed
a population projection matrix, which was used for further demographic analyses. I found
that the population was slowly increasing in 1980, but it started to decline slowly around
1992. I show that (1) this change was caused by increased mortality of females that have
just given birth, (2) protecting two females a year from the deaths is enough to prevent the
declining trend, and (3) demographic stochasticity is a more important factor influencing
their long-term viability than environmental stochasticity.

Dissertation Advisor: Hal Caswell, Senior Scientist, Woods Hole Oceanographic Institution




Acknowledgments

I am very grateful to my advisor Hal Caswell for accepting me as his student and even more
grateful for his guidance and patience to tolerate me for almost five years. If I achieve any
success in the future, a significant part of it will owe to the training I received from him.
I am also grateful to other members of my thesis committee, Glenn Flierl, James Nichols,
Michael Neubert, and Andrew Solow, for their insights and constructive advice. I especially
thank Michael Neubert for his mathematical assistance.

I thank Scott Kraus, Amy Knowlton, Phillip Hamilton, and New England Aquarium for
photographic identification data of the North Atlantic right whale. The data are used in
Chapter 2, 3, 5, and 6. I thank Solange Brault, Jean-Dominique Lebreton, James Nichols,
and other participants of the first Woods Hole Workshop on the Demography of Marine
Mammals for discussions and suggestions. I also thank Joel Cohen and Roger Nisbet for
participating in annual Nantucket laboratory retreats as special guests and helping me with
some of my problems. I also thank Takenori Takada for useful information and many helpful
suggestions.

This thesis is a collection of manuscripts that were published, accepted, or to be submit-
ted to various journals. All the manuscripts were co-authored with my advisor Hal Caswell
except the manuscript on the dispersal kernel estimation method (Chapter 4). The latter is
co-authored with Michael Neubert and Hal Caswell. I thank James Bence, Evan Cooch, and
an anonymous reviewer for their comments on Chapter 2, James Bence, Jean-Dominique
Lebreton, and Gary White for their comments on Chapter 3, and Peter Kareiva, James
Nichols, and an anonymous reviewer for their comments on Chapter 4 during the review
processes for journals. I also thank Heidi Fuchs for commenting on abstract and Chapter
1.

The David and Lucile Packard Foundation, the Rinehart Coastal Research Center, and
the Woods Hole Oceanographic Institution Sea Grant Program (NOAA NA86RG0075) sup-
ported this work through grants to Hal Caswell. Graduate Research Fellowship from Woods
Hole Oceanographic Institution also supported the first year of my study.

I am very grateful to Lauren Mullineaux for her assistance as the education coordinator
for the Joint Program in Biology. My smooth ride through the Ph.D. program owes a
great deal to her. I am also grateful to Judy McDowell for acting as a chair person of
my thesis defense. I also thank Marsha Bissonette, Stella Callagee, Marcey Simon, Susan
Tomeo, Mary Jane Tucci, Julia Westwater, and other staff at Education Office and Biology
Department for their help in business matters.

My life at Woods Hole Oceanographic Institution was significantly improved (p < 0.001)
by my friends. I thank Karin Harding, Mark Hill, Tin Klanjscek, Petra Krepac, and Amanda
McDonald for their help with miscellaneous matters. I only hope that I did not annoy them
too much as their office mate. I am also very grateful to John and Ofelia Tolli for occasional
invitations to their dinner.

Last but not least, I would like to thank my wife Yumi and son Takuma. Without their
support, this thesis could have not been completed. I would like to dedicate this thesis to
them.




Contents

1 Introduction 11
1.1 Brief History of Mark-Recapture Methodology . . . ... ... ... . ... 11
1.2 Overviewof Thesis . . . . . . . . . . o o i i i i e e e 13

2 Estimating population projection matrices from multi-stage mark-recapture
data 16
2.1 Imtroduction. . . . . . . . . v i i i e e e e e 16
2.2 MSMR Statistics . . . . . .« o v v v e e e e e 17

2.2.1 Transition and Capture Probability Matrices . . ... ... .. ... 20
2.2.2 Stage-Assignment Matrices . . . . ... ... ... ... 21
223 Likelihood . . . . . . . . . . .. .. 23
2.3 Transition Probabilities as Functions of Covariates . . . ... ... .. ... 25
2.4 Matrix Population Models . . . . . . .. ... ... . oL 27
2.4.1 Conversion from a Transition Matrix to a Population Projection Matrix 28
2.4.2 Confidence Intervals for Population Growth Rate . . . . . . . . ... 29
2.5 Application to the North Atlantic Right Whale . . . . . ... ... ... .. 30
2.5.1 Stage-assignment matrices . . . . . .. .. ... 31
2.5.2 Capture probabilities . . . . . . . . ... ... ... .o 33
2.5.3 'Transition Probabilities . . . .. .. ... ... . ... .. ...... 34
2.6 Discussion . . . . . . . . i e e e e e e e e e 36

3 A general approach to temporary emigration in mark-recapture analysis 39

3.1 Introduction. . . . . . . . . . . . i i e e e 39
3.2 Temporary-emigration stage structures . . . . . . . ... ... ... ... .. 42
3.3 Estimability of parameters . . . . . . . . ... ... .. Lo 45
3.3.1 Determining estimability of parameters . . .. ... ... ... ... 46
3.3.2 An example of the Jacobian method . . . . .. .. ... ... .... 48

3.4 Estimable parameters in temporary emigration models . . . . . .. ... .. 49
3.5 Bias caused by temporary emigration . . . . . .. .. ... Lo 53
3.6 Anexample: theright whale . ... ... .. ... .............. 55
3.7 DISCUSSION .+ v v v v v e e e e e e e e e e e e e e e e 58
4 Estimating dispersal kernels from individual mark-recapture data 60
4.1 Introductionm . . . . . . . ¢ . o o i i i e 60
42 Dispersal Kernels . . . . . . .. ... .. ... 0 o 62

4



4.3 Capture Probability Functions . . . .. ... ... ... ........... 63

4.4 An Algorithm for the Likelihood . . .. .. ... ... .. .......... 64
4.5 Joint Probability Density of Location and Past Capture History Sequence . 66
4.6 Bias of Parameter Estimates . . . . . ... .. ... ... 0 oo 69
4.7 Bias Caused by Assuming Large Sampling Domain . . . . ... ... .. .. 71
4.8 Dispersal Kernel Selection Performance . . . ... ... ... ........ 77
4.9 Extension ofthe Method . . . . . . . ... ... .. ... ... ... ..., 81
49.1 Kernel Shape . . . . . . . . . .. e 81
4.9.2 Mortality . . . . . . .. e 82
4.9.3 SamplingDesign . . . . ... ... ... .. e 83

4.10 DISCussion . . . .« . vt e e e e e e e e e e e e e 84
411 Appendix . . . . . .o e 86
5 Demography of the endangered North Atlantic right whale 90

6 Stage-structured demographic analysis of North Atlantic right whale: Ef-
fects of environmental and demographic stochasticity on population via-

bility 96
6.1 Introduction. . . . . . . . . . v i i i 96
6.2 Method . . . . . . . . . e 97
6.2.1 Matrix Population Model for the North Atlantic right whales . . . . 97

6.22 Data . . . . . e e e e e 99

6.2.3 Multi-stage mark-recapture statistics . . . . . .. ... ... L. 100

6.2.4 Parameterstobeestimated . . . . . ... ... o oo 101

6.3 Results. . . . . . . . . . e 106
6.3.1 Modelselection . . . . . . . .. ... 106

6.3.2 Bstimated probabilities . . . . ... ... . Lo oo 107

6.3.3 Uncertainty in parameter estimates . . . . . .. . ... .. ... ... 111

6.3.4 Environmental Stochasticity . . . . . ... ... .. .00 113

6.3.5 Demographic stochasticity . . . . . . ... ... ... ... o0 116

6.3.6 Environmental and demographic stochasticity . . . . . . . ... ... 118

6.3.7 Moresimulations . . . . ... . ... ... o 123

6.4 Discussion . . . . . . . . oo e e e 124

7 Conclusion 127
Bibliography 130




List of Figures

2.1

2.2

3.1

3.2

3.3

A stage structure for female (a) and male (b) right whales. This structure is
used as an example for the MSMR statistics. . . ... ............
Stage-specific capture probabilities for (a) immature male and female, (b) ma-
ture female, and (c) mature male right whales. Error bars indicate point-wise
95% confidence intervals estimated from 1000 parametric bootstrap samples
generated assuming a multivariate normal distribution of the logit of parame-
ters. The covariance matrix of the distribution was estimated as the inverse
of the Hessian matrix (see Burnham et al., 1987; Lebreton, 1995). Mothers
had a constant capture probability 0.99 (95% CI =[0.98, 1.00]). . . . . . ..

Inter-birth temporary-emigration stage structures. (a) General stage struc-
ture. (b) Stage structure with k£ = 1. This represents the temporary emigra-
tion of Wandering Albatross. (Models 1.1, 1.2, and 1.3). (b) Stage structure
with & = 2. This represents the temporary emigration of the right whale.
(Models 2.1, 2.2, and 2.3). Parameters for these stage structures are ¢;; a
transition probability from stage j to i, and p; a capture probability of stage
1. Stages other than stage 1 have a zero recpature probability. . . ... ..
Immature temporary-emigration stage structure. (a) General stage structure.
(b) Stage structure with k£ = 4. This represents the temporary emigration of
the grey seal. (Models 3.1, 3.2, 3.3, 3.4, and 3.5). (c) Stage structure with
k = 5. This represents the temporary emigration of Wandering Albatross.
(Models 4.1, 4.2, 4.3, and 4.4). Parameters for these stage structures are ¢;;
the transition probability from stage j to ¢, and py, the recapture probability of

19

35

43

the mature stage. Stages other than stage k have a zero recpature probability. 44

Analyses of North Atlantic right whale data. (a) Survival probability of
females that have previously given birth at least once during periods between
1980 and 1988 and between 1989 and 1997. (b) Expected number of future
reproductions during the lifetime of females that have given birth at least

(o> o Lo = e L



4.1

4.2

4.3

4.4

4.5

Joint probability density of location of an individual and its past capture his-
tory sequence (solid line) and the marginal probability density of location of
the individual (dashed line). We simulated movements of the two individuals
using the Gaussian kernel (a = 1,u = 0), and their capture was simulated
using the M, sampling protocol with probability u = 0.85 within d = [-1, 1]
and u = 0 outside. (a) The probability densities at t = 1 when an individual
was released at ¢ = 0 at t = 0. (b) The probability densities at ¢ = 2 when
an individual was released at = 0 at ¢t = 0 but not recaptured at ¢t = 1. (c)
The probability densities at ¢ = 3 when an individual was released at z = 0
at t = 0 but not recaptured at ¢t = 1 and t = 2. (d)-(f) The same as (a)-(c)
except the individual is released at z = 0.5 at t = 0. Vertical lines indicate
the edges of the sampling domain. . . . ... .. .. ... . ... ... ...
Kernels based on the 5th largest and the 5th smallest of the 50 estimated
parameter values (solid lines) and the true kernel (Gaussian) used to gener-
ate the data (solid line with triangles). (a) Parameters estimated applying
Gaussian kernel and the true sampling domain size (algorithm in Section
4.4). (b) Parameters estimated applying Gaussian kernel but assuming the
sampling domain size was large enough to include all individuals at all sam-
pling occasions (Equation 4.14). See the text in Section 4.6 for how data
were generated. . . . . . ... e e e e
Kernels based on the 5th largest and the 5th smallest of the 50 estimated pa-
rameter values (solid lines) and the true kernel (Laplace) used to generate the
data (solid line with triangles). (a) Parameters estimated applying Laplace
kernel and using an appropriate sampling domain size (algorithm in Section
4.4). (b) Parameters estimated applying Laplace kernel but using a larger
than actual sampling domain size (d = m in the algorithm in Section 4.4).
(c) Parameters estimated applying Gaussian kernel and assuming the sam-
pling domain size was large enough to include all individuals at all sampling
occasions (4.14). See the text in Section 4.6 for how data were generated.

Kernels based on the 5th largest and the 5th smallest of the 50 estimated pa-
rameter values (solid lines) and the true kernel (Cauchy) used to generate the
data (solid line with triangles). (a) Parameters estimated applying Cauchy
kernel and using an appropriate sampling domain size (algorithm in Section
4.4). (b) Parameters estimated applying Cauchy kernel but using a larger
than actual sampling domain size (d = m in the algorithm in Section 4.4).
(c) Parameters estimated applying Gaussian kernel and assuming the sam-
pling domain size was large enough to include all individuals at all sampling
occasions (4.14). See the text in Section 4.6 for how data were generated.

The probability of selecting the true kernel shape when the true kernel shape
was Gaussian as the sampling domain is changed. Error bars indicate esti-
mated point-wise 95% confidence intervals. Vertical lines on the left and right
indicate the size of sampling domain where 50% of individuals are expected
to be within the sampling domain at ¢t = 1 and ¢ = 3, respectively. . . ...

67

74

75

76




4.6

4.7

4.8

5.1
5.2

5.3

5.4

5.5
5.6

5.7

6.1

6.2

6.3

6.4

6.5

The probability of selecting the true kernel shape when the true kernel shape
was Laplace as the sampling domain is changed. Error bars indicate esti-
mated point-wise 95% confidence intervals. Vertical lines on the left and
right indicate the size of sampling domain where 50% of individuals are ex-
pected to be within the sampling domain at ¢ = 1 and t = 3, respectively. . 78
The probability of selecting the true kernel shape when the true kernel shape
was Cauchy as the sampling domain is changed. Error bars indicate estimated
point-wise 95% confidence intervals. Vertical lines on the left and right indi-
cate the size of sampling domain where 50% of individuals are expected to
be within the sampling domain at ¢t = 1 and ¢ = 3, respectively. . . . . . .. 79
The probability of selecting the true kernel shape when the true kernel shape
was Gaussian as the region of intense sampling was increased under sam-
pling protocol Ms. Error bars indicate estimated point-wise 95% confidence
intervals. . . ........ ... . . . . e 80

Life cycle graphs of (a) female and (b) male right whales. . .. ... . ... 91
Stage-specific sighting probabilities of the best model (M3) for (a) females
and (b) males. Stage-specific survival probabilities (M3) for (c) females and
(d)males. . . ... 91
Constant transition probabilities estimated using the best sighting model (M;). 92
Joint 95% profile likelihood confidence region for the logistic parameters of

survival probability of mothers. . . ... .. ... .............. 92
Demographic parameters calculated from the time-varyingmatrices A¢. . . 93
The probability distribution of time to extinction assuming demographic sto-
chasticity. . . . . . . . ... 93
The predicted population growth rate that would result from preventing
deaths of females regardless of theirstage. . .. ... ............ 94

Life cycle graph of the North Atlantic right whales: 1: calves, 2: immature
females, 3: mature females, 4: mothers, 5: mature females during a year
after the motherstage . . . .. . ... ... ... . ... ... ... . ..., 98
Stage transition graph of the North Atlantic right whales: 0: deaths, 1:
calves, 2: immature females, 3: mature females, 4: mothers, 5: mature
females during a year after the mother stage, 6: immature males, 7: mature
Males . . . . e e e e e e e e e e e e e 102
Stage-specific capture probabilities: (a) female under M;, (b) female under
M;, (c) female under Mj, (d) male under M, (e) male under Mz, and (f)
male under M3 (triangles, juvenile; circles, mature; diamonds, mother; stars,
year after the mother stage). . .. ... .. S 108
Stage-specific survival probabilities: (a) female under M, (b) female under
M;, (c) female under M3, (d) male under M, (e) male under M3, and (f)
male under M3. The curves are for calves (squares), juvenile (triangles),
mature (circles), mother (diamonds), and year after the mother stage (stars). 110
Conditional transition probabilities £33 under M; (a), Mz (b), and M3 (c). . 112



6.6

6.7

6.8

6.9

6.10

Distributions of quasi-extinction time showing parameter uncertainty under
M (a), M (b), and M3 (c). Parameters generated with estimated means and

associated covariance matrix assuming their multivariate Normal distribution.114

Cumulative probability density for quasi-extinction time showing the effect
of environmental stochasticity under M (a), My (b), and M3 (c). The left
vertical line shows median, and the right vertical line shows quasi-extinction
time calculated under the deterministic model. (see text for the method) . .
Cumulative probability density for quasi-extinction time showing the effect
of demographic stochasticity under M; (a), M2 (b), and M3z (c). The left
vertical line shows median, and the right vertical line shows quasi-extinction
time calculated under the deterministic model. (see text for the method) . .
Stochastic simulations of the total population size with both environmen-
tal and demographic stochasticity under M; (a), My (b), and M3 (c). 50
randomly selected paths are shown. The simulation does not assume the
correlation between transition into the mother stage and fertility. The solid
line is a path of the deterministic model. . . . . . . ... ... ... ... ..
Distribution of quasi-extinction time showing the effect of both environmental
and demographic stochasticity under M; (a), M> (b), and M3 (c). The sim-
ulation does not assume the correlation between transition into the mother
stage and fertility. . . . .. .. ... Lo Lo

117

119

121




List of Tables ‘

2.1

2.2

2.3
3.1

3.2

3.3

4.1

4.2
4.3

6.1

6.2

Some possible capture histories corresponding to the example stage structure
in Fig. 2.1 and their likelihood. . . . . ... ... ... ............
Dependence of the best capture model for the North Atlantic right whale on
effort level and time. . . . . . .. ... ... ..
Estimated transition probabilities for the North Atlantic right whale. . . . .

Parameter constraints, number of parameters, and the rank of the Jacobian
matrix for the 15 temporary emigration models. * indicates that values of
all the free parameters are estimable. . . . . . .. .. ... ... ... .. ..
Actual and mean of estimated parameters for Models 1.3, 2.3, 3.4, 4.2, and
4.5. Values in parentheses are standard deviations. Results based on simu-
lating 1000 replicate datasets. . . . . . .. .. .. ... ... .. ...,
Estimated capture and survival probabilities wrongly assuming no temporary
emigration (simple Cormack-Jolly-Seber model with constant capture and
survival probability). Data were generated assuming Models 1.3, 2.3, 3.4,

. and 4.2. Values in parentheses are standard deviations. Results based on

simulating 1000 replicate datasets. . . . . .. ... ... ... ... . ...,

Sampling and movement scenarios used to examine parameter estimation
Performance. . . . . . . . . . s . e e e e e
Comparison between true and estimated parameter values (sample size 50).
Comparisons of scale parameters (o, 3, or y) when appropriately setting the
size of the sampling domain and when wrongly assuming that the sampling
domain was large enough to include all individuals at all sampling occasions
(samplesize 50). . . . . . . ...

Akaike weight for the 10 best models. 4/ indicates that the model include

the corresponding covariate (time or NAO index). . ... ..........
Results of extinction time calculations . . . . ... . ... ... ... ...,

10

26

33
34

50

54

54

69
71



Chapter 1

Introduction

Mark-recapture (capture-recapture) methods have become an important tool in population
biology. The methods are used to estimate population size (e.g. Petersen, 1896; Lincoln,
1930; Jackson, 1933), survival probability (e.g. Burnham et al., 1987; Lebreton et al., 1992;
Caswell et al., 1999), and transition probabilities among spatial locations (e.g. Arnason,
1972, 1973) and life stages (e.g. Nichols et al., 1992b). In a mark-recapture study, a popu-
lation consisting of previously marked (or identified) individuals is resampled in subsequent
sampling occasions. By resampling the population, information on the capturability of
individuals is obtained. This information allows better estimates of population param;:—
ters than methods where the parameters are calculated directly from count data under the

assumption that probability of capturing individuals is 1.

1.1 Brief History of Mark-Recapture Methodology

Mark-recapture sampling was originally developed as an alternative approach to a census
for estimating population size. In the original method, the resampling was only done once
to obtain the numbers of individuals that were marked and unmarked at the resampling oc-
casion, from which capture probability was estimated. By dividing the number of originally
marked individuals by the capture probability, the abundance of individuals in a population
was estimated. Let z, y, and z be the number of individuals marked at time 1, the number

of individuals caught at time 2, and the number of recaptured marked individuals at time

11




2, respectively. Then the population size N can be estimated as

oY
N == 1.1
Y, (L)

where 5 is an estimated capture probability assuming it was the same at the two sampling
occasions. Equation (1.1) is often called the Lincoln-Petersen estimator in mark-recapture
literature. This estimator implicitly assumes that the population is closed to immigration,
emigrétion, birth, and death, and also assumes that capturability of marked and unmarked
individuals are the same. This method was first used by Laplace in the 18th century
to estimate the human population in France (Cormack, 1968). It was rediscovered later
by Petersen (1896) and Lincoln (1930) and used to estimate population size of fish and
waterfowl, respectively.

The method to estimate survival probability from mark-recapture data was developed by
Cormack (1964), Jolly (1965), and Seber (1965). This method is often called the Cormack-
Jolly-Seber (CJS) method. While the only data required for the Lincoln-Petersen estimator
are number of individuals marked, number of marked individuals recaptured, and the to-
tal number of individuals recaptured, the CJS method requires additional information on
whether or not each uniquely marked individual was recaptured at each sampling occasion
(i.e. individual capture history data). In the CJS method, the individual capture histories
are modeled assuming all marked individuals have the same capture probability; however,
it does not make any assumption on the capturability of unmarked individuals. In reality,
the capture probability may be different among individuals (i.e. heterogeneous), and ones
with lower capture probability may be more likely to be unmarked than others. Because
the CJS method does not make any assumption on the capturability of unmarked individu-
als, it is more robust to the heterogeneity in capture probability than the Lincoln-Petersen
estimator. Extensive reviews of the CJS method can be found in Burnham et al. (1987)
and Lebreton et al. (1992).

As an extension of the CJS method, Arnason (1972) and Arnason (1973) developed

12



a method to estimate movement rates of individuals among discrete spaces, along with
their survival and capture probabilities. This method is called multi-type mark-recapture
method. The multi-type mark-recapture method requires information on where individuals
were marked and recaptured, in addition to the individual capture histories that are required
for the CJS method. The data are modeled with capture probability, survival probability,
and transition probabilities among spatial locations. This method was later generalized by
Nichols et al. (1992b) to be used with multi-stage mark-recapture data, in which “stage”
can be defined in terms of the life cycle (age classes, size classes, developmental stages), or

any other property that divides individuals into subgroups.

1.2 Overview of Thesis

The focus of my thesis work is on advancing the mark-recapture analysis method to extract
useful information for demographic analyses from the data. The thesis consists of five main
chapters following this introduction. The first three chapters are primarily on new mark-
recapture methodology, and the last two chapters are application of the methods to actual
data of the North Atlantic right whale.

In Chapter 2, I present four major improvements in the multi-stage mark-recapture
method. (1) I use a Markov chain formulation of the life cycle to express the likelihood
functions in matrix form, which makes numerical calculations simpler. (2) I introduce a
method to incorporate capture histories with uncertain stage and sex identifications, which
allows the use of capture history data with incomplete information. (3) I introduce a
simple function that allows multinomial transition probabilities to be written as functions
of covariates (time or environmental factors). (4) Finally, I show how to convert transition
probabilities estimated by the MSMR method into a matrix population model.

In Chapter 3, I present a new method to estimate survival probability from the capture
histories of marked individuals that become unobservable during some life stages. During

mark-recapture studies of open populations, animals often temporarily emigrate from study
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areas. Such temporary emigration can cause biased estimates of survival probabilities and
other parameters. The new method uses stage-structured models that include one or more
stages representing the individuals that have temporarily emigrated. Although not all pa- .
rameters can be estimated in such stage structures, some important parameters are still
estimable. The estimability of parameter values is determined from the rank of the Jaco-
bian of the likelihood function. I apply the temporary-emigration mark-recapture method
to artificial data, representing various life histories, and demonstrate consistency between
actual and estimated values. The method presented in this chapter will be especially useful
for studies of seabird, sea turtle, and marine mammal populations where breeding is delayed
and where individuals are sampled only on their breeding grounds.

In Chapter 4, I present a new method for estimating a distribution of dispersal dis-
placements (a dispersal kernel) from mark-recapture data. One conventional method of
calculating the dispersal kernel assumes that displacements are normally distributed (e.g.
resulting from a diffusion process), and that individuals remain within sampled areas. The
first assumption prohibits an analysis of dispersal data that are not normally distributed (a
common situation); the second assumption leads to underestimation of dispersal distance
because individuals that disperse outside of sampling areas are never recaptured. The new
method eliminates these two assumptions. This method uses integrodifference equations to
express the probability of spatial mark-recapture data; associated dispersal and recapture
parameters are then estimated using a maximum likelihood method. The accuracy of model
selection was examined using Akaike Information Criteria (AIC). The method presented in
this chapter will allow re-examination of existing data sets and suggests designs for future
mark-recapture experiments.

In Chapter 5, I apply the method presented in Chapter 2 to the data of the North
Atlantic right whale. The North Atlantic right whale (Eubalaena glacialis) is considered
the most endangered large whale species. The current population size is about 300 in
the northwestern Atlantic, and the number is declining. I applied the multi-stage mark-

recapture statistics to the 17-year individual sighting history data collected by New England
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Aquarium, MA. Using the estimated transition probabilities, I constructed a population
projection matrix. In this chapter, I also present various demographic analyses based on
the projection matrix.

In Chapter 6, I extend the analysis in Chapter 5. In particular, I analyze the impor-
tance of demographic and environmental stochasticity to the population viability. I apply
the branching process calculations (e.g. Caswell, 2001), calculations based on a diffusion ap-
proximation to the changes in log of population size (e.g. Tuljapurkar, 1990; Dennis et al.,
1991), and simulation (e.g. Caswell, 2001) to calculate the expected time to extinction from
the estimated parameters.

At the time of writing this thesis, Chapter 2 and 3 have been accepted to Ecology.
Chapter 4 is to be submitted to Biometrics. Chapter 5 has been published in Nature.

Chapter 6 is to be submitted to a journal that is to be determined.
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Chapter 2

Estimating population projection
matrices from multi-stage
mark-recapture data

2.1 Introduction

Mark-recapture estimates of survival probability have been applied to many animal popula-
tions (e.g., Lebreton et al., 1992; Forsman et al., 1996; Weimerskirch et al., 1997; Hastings
& Testa, 1998; Caswell et al., 1999; Pease & Mattson, 1999), and this method has become
an important tool in population management. Mark-recapture estimates are based on cap-
ture histories of individually identified animals, which contain information on whether or
not each individual was captured at each sampling occasion. For example, capture history
data may be obtained by annual observations of banded birds or photographically identified
whales. When such data are available, mark-recapture statistics are considered one of the
best approaches for estimation of survival probability.

Modern deniographic analysis goes beyond calculating survival, by breaking the life
cycle into stages (which may be based on age, size, developmental or behavioral states,
physiological condition, spatial location, or any other property that divides individuals into
subgroups). The fate of individuals is described in terms of transition probabilities among
these stages, and those transition probabilities form the basis for matrix population models

(Caswell, 2001). Nichols et al. (1992b) introduced a method to estimate transition probabil-
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ities among stages from mark-recapture data, which we call the multi-stage mark-recapture
(MSMR) method. This method extends the method originally developed to estimate prob-
abilities of movement among spatial locations (Arnason, 1972, 1973; Brownie et al., 1993;
Lebreton, 1995). For the MSMR method, in addition to information on whether or not each
individual was captured, the capture history data must also include the stage of captured
individuals at each capture occasion. MSMR, models account for inter-group heterogeneity
in survival and capture probability by grouping similar individuals into stages. The devel-
opment from single-stage to multi-stage mark-recapture statistics parallels the development
from unstructured to structured population models. In fact, one motivation for the statisti-
cal development was the need to estimate parameters in stage-structured matrix population
models from mark-recapture data (Nichols et al., 1992b).

The analysis is based on maximization of a likelihood function that depends on all the
possible sequences of stage transitions compatible with an observed capture history. There
can be very many of these sequences, and one of the most complicated parts of the method
of Nichols et al. (1992b) is writing them all down with their associated probabilities. In this
paper, we describe the life cycle as a Markov chain, and take advantage of this description
to write the likelihood in a simple matrix notation. A sketch of this method was given
in Caswell (2001, Section 6.1.2.2). Here we give a complete presentation, and extend the
method to incorporate uncertainty in stage and sex identifications, which allows the use of
capture histories containing incomplete information. We also introduce a simple function
that allows multinomial transition probabilities to be written as a functions of covariates
(e.g., environmental variables or time). Finally, we show how to convert the estimated

transition probabilities into a matrix population model.

2.2 MSMR Statistics

The MSMR method involves three main steps: (1) constructing an appropriate stage struc-

ture, (2) expressing the likelihood function in terms of parameters, based on available cap-
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ture histories, and (3) finding the best parameter estimates using maximum likelihood
theory. The parameters in the MSMR model are those that define the capture probabili-
ties of each stage at each sampling occasion and the transition probabilities among stages
between consecutive sampling occasions. The method assumes that individuals in the same
stage are identical and independent, but that individuals in different stages may differ in
their transition and capture probabilities. The MSMR method is very flexible and can
be applied to almost any stage structure. - Constructing a useful stage structure that is
compatible with the life cycle of populations requires experience in addition to sufficient
mathematical and biological knowledge, and different stage structures are extensively re-
viewed in Caswell (2001). In this paper, methods for expressing the likelihood function
and estimating parameters are described assuming an appropriate stage structure has been
constructed.

To make our discussion more concrete, we will demonstrate the method using a stage
structure (Fig. 2.1) developed to describe the life history of the North Atlantic right whale
(Bubalaena glacialis). This is a two-sex, multi-stage model that distinguishes calves (stage
1), immature individuals (stage 2), and mature individuals (stage 3). In addition to these
three stages, females also have a stage for individuals nursing a calf (stage 4); we call the
individuals in this stage “mothers.” Stage 0 corresponds to death, and the probabilities ¢y;
associated with the arrows going to stage 0 are stage-specific mortality rates. As usual,
“mortality” includes both death and permanent emigration.

The objective of the MSMR approach is to estimate the transition probabilities associ-
ated with each arrow and the capture probabilities of each stage. In the next section, we
show how to construct matrices containing the transition and capture probabilities, and to
account for uncertainty in the assignment of individuals to stages. Then we will show how

to calculate the likelihood in terms of these matrices.
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2: Immature
3: Mature
4: Mature with Calf
0: Dead

1: Calf
2: Immature
3: Mature
0: Dead

Figure 2.1: A stage structure for female (a) and male (b) right whales. This structure is
used as an example for the MSMR statistics.
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2.2.1 Transition and Capture Probability Matrices

The transition matrix is constructed by first putting the transition probability ¢; from
(living) stage i to (living) stage j in the (j,i) position. To this matrix is appended a row
containing the probabilities of transition from each stage to stage 0 (death) and a column
containing the probabilities of transition from stage 0 to each stage. Because we treat death
as a stage, the result is the transition matrix of an absorbing Markov chain, with death as
an absorbing state. The matrix is column stochastic. The ability to treat transitions as a
Markov chain is critical to our analysis. The transition matrix for females, corresponding

to the stage structure in Fig. 2.1 is

{ o 0 0 0 |0
$(t) o) O 0 |0

8N0)=| 0 ¢nl) ¢ub) u@ |0 (2.1)
0 da@) s 0 |0

\ Po1(t) ¢o2(t) dos(t) oa(t) |1

>

where ¢;i(t) is the probability of females making transition from stage ¢ to 7 between time
t and ¢ + 1. The upper left block of the matrix describes the transition among live stages,
and lower left block of the matrix contains stage specific probabilities of death. The 1 in
the (5,5) entry is the probability of dead individuals remaining dead in the following year.
The notation ¢;;(t) in this paper corresponds to ¢; in Nichols et al. (1992b).

Similarly, the transition matrix for males, corresponding to the stage structure in

Fig. 2.1, is
0 0 0 0
<I>§m)(0) _ da(t) ¢o2(t) 0 |0 22)
0 ¢sa(t) ¢33(t) |0
d01(t) Po2(t) ¢o3(t) | 1
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We have written <I>§f ) and @gm) as a function of a vector of parameters 8. Then para-
meters could be the ¢;; themselves, or lower level parameters from which the ¢;; can be
calculated. The objective is to estimate 6.

Capture probability matrices P, defined for females and males separately, contain stage-

specific capture probabilities on the diagonal and zeros elsewhere:

mE 0 0 0 0
0 pot) O 0 0
PP@)=| 0o 0 pt) 0 0 (2.3)
0 0 0 pat) O
0o 0 0 0 0
mt 0 0 0
m 0 pg(t) 0 0
P{™)(6) = (2.4)
0 0 ps(t) O
o 0 0 ©

where p;(t) is the probability of capturing individuals in stage j at time ¢. This notation
corresponds to pj;: in Nichols et al. (1992b). As written here, ng ) and P§’") assume that
dead individuals are never captured (p(()f ) = p(()m) = 0), but such captures could be included.

Transition and capture probability matrices can be defined separately for females and
males when information on sex identification is available, as in our example, but it is not
always possible or necessary to have a two-sex model. In such cases, only a single transition

and capture probability matrix is needed.

2.2.2 Stage-Assignment Matrices

A stage-assignment matrix is defined for each individual each time it is captured. The
diagonal elements of the matrix are proportional to the certainty of stage identification at

time ¢ (i.e., to the probability that the individual is in a given stage when it is captured).

21




This probability should be known prior to estimating transition and capture probabilities.

In our example, individual k is a female; its stage-assignment matrix is

RO 0 0 0
0o «Pi) o 0 0
uP = o o <P o 0 2.5)
0 0 o «Pw) o
\ 0 0 0 0«

where u§~k) (t) is the probability that individual k at time ¢ is in stage j (j = 1,2,3,4).

Similarly, if individual k is male, its stage-assignment matrix is

RO 0 0
(*)
0 o «Pr) o
0 0 0 «P©

Because we assume that the capture probability of dead individuals is zero, the value for
u(()k) (t) will not enter into the likelihood calculations. Multiplication of U§k) by a scalar has
no effect on the maximum likelihood estimates.

If the stage of the individual is known with certainty, its stage-assignment matrix con-
tains a 1 in the corresponding diagonal entry and zeros elsewhere. On the other hand, if
the stage of an individual is completely unknown, the identity matrix can be used for ng).
This specifies a uniform probability distribution over the possible stages. Alternatively, if
an independent assessment of the probability is available, it can be entered into the matrix.
For example, in an age-structured model of fish, age of fish is sometimes determined from
their length using age-length keys (e.g. Fournier & Archibald, 1982; Deriso et al., 1985.;
Quinn & Deriso, 1999). Such a key could provide the probability distribution of age of the

fish, which can be entered into the stage assignment matrices, for an age-structured model.
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2.2.3 Likelihood

The likelihood of the parameter vector @ contains contributions from the capture history of
each individual. We denote by Ix(6) the contribution to the likelihood from individual k;
it is proportional to the probability of the capture history. That probability is the sum of
the probabilities of all possible sequences of transitions that could have been taken by the
individual k. There may be many such possibilities. Their sum, however, can be calculated
using the transition, capture probability, and stage-assignment matrices by the following

algorithm. We assume the individual is first captured at time ¢;.

1. Categorize individual k by its stage at its first capture, taking uncertainty in stage

assignment into account,

UPe. (2.7)

where e is a vector of ones. This product is a vector whose entries are proportional

to the probabilities of the initial stage of the individual at .

2. Calculate the probability distribution of the stage at t by multiplying this vector by

the transition matrix ®y,.

&, UMe. (2.8)

3. Calculate the probabilities of observation outcomes at ¢:

if individual k was captured at ¢35, multiply by the sighting matrix Py,:
P, &, UPe, (2.9)
if individual k was not captured at t2, multiply by (I — Py,):
(I-Py,)®;, UPe, (2.10)

where I is the identity matrix,
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4. Account for stage identification at ¢t by multiplying by the stage assignment matrix;

if individual k was captured at i

uPp, &, UPe, (2.11)

2 1

if individual k& was not captured at t»

I(I - P,)®,UMe. (2.12)

5. Repeat steps 2-4 until the end of the capture history for individual k. The result is a
vector whose ith entry is proportional to the probability of all the pathways by which
individual k could have moved from its initial stage at ¢; to stage ¢ at ¢, and that are

compatible with its capture history.

6. The final step is to sum the resulting vector of probabilities to obtain,

: (0) = e'UP ... &, UPe, (2.13)

In this algorithm, the probability distribution of the individual’s stage is updated sequen-
tially over time taking into account the new data available at each time step and possible
stage transitions determined by the stage structure. Therefore, the right-hand side of equa-
tion (2.13) is the probability of the capture history for individual k, taking into account all
possible transition sequences compatible with that history.

T'he likelihood x(@) is calculated using only female or male matrices if the sex of indi-
vidual k is known. If the sex of individual k is uncertain, the above algorithm is repeated to
get likelihoods l,(cf ) (6) and z,(;”)(o) using the female- and male-specific matrices, respectively.

Then, the likelihood I (@) is

1(8) = ps () + (1 — py)I™(6), (2.14)
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where py is the probability that the individual k is female. The probability ps is 1 or 0
when the sex of the individual is known to be female or male, respectively. If the sex of the
individual is unknown, a probability must be provided to calculate the likelihood.

Some examples of probabilities of the capture histories of individuals with four capture
periods are shown in Table 2.1. Because our example contains multiple stages, many possible
capture histories exist, of which only a few are shown in Table 2.1. For simplicity, we
assume that sex of all individuals is known to be female. None of the likelihoods in Table
2.1 contains Py, because the probability of a capture history is always conditional on the
first capture; therefore, capture probability at the first sampling time cannot be estimated.
For the same reason, the likelihoods of individuals 5, 7, 8, 11, 12, and 13 do not begin at
time ¢ = 1, because capture histories prior to the first capture of an individual do not enter
into probability calculations.

Given the likelihood functions Ix(0) for all individuals, the likelihood associated with
the data consisting of n capture histories is proportional to the product of the n likelihood

functions

L(6) ﬁ 1,(6). (2.15)
k=1

Here, we assume that individuals are captured and make stage transitions independently,
but based on identical probability distributions (i.e. we assume the number of outcomes
falling into the possible capture history sequences is multinomial).

Maximurmn likelihood estimates 6 are found by maximizing L(8). The likelihood function
can be maximized numerically using software such as MATLAB. For example, the MATLAB

routine £fminu can be used to find the maximum likelihood by minimizing — log L(8).

2.3 Transition Probabilities as Functions of Covariates

Transition probabilities ¢;;(t) may change over the course of a study, and the changes may
be correlated with various factors. We would like to model the probabilities as functions

of covariates measuring those factors. For example, population density and sampling effort
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Table 2.1: Some possible capture histories corresponding to the example stage structure in
Fig. 2.1 and their likelihood.

ID (k) Capture History* Likelihood Ix(0)

1 3433 e"UPP,8;UPP;3,U P&, U e

2 122X eT(I - Py)®3UPP;8,UPP,8,Ue

3 22X3 e UPP @31 — P3) B, UL P&, UPe

4 1X22 TUYP, @ UMP 8, (1 - P2)&,UYe

5 X343 eTUP P 3 UP P32, U e

6 12XX &7 (I — Py)®3(I — P3) &, U P8, U0

7 XX33 U P, &,U e

8 X43X eT(I - Py) 85U P;3,UPe

9 4XX3 U P, ®5(I - P3)®2(I— P2)&,UYe

10 2X2X " (I — Pg)@3USOP;8,(1— P2)&, U Ve

11 X3X4 eUVP,83(1 — P3) &, UL Ve

12 XX1X e"(I - P,) 83U e

13 X3XX eT(I — Py)®3(I — P3)®,UPe

14 2XXX eT(I — Py)@3(I — P3)®y(I — Py)®, U e
®

Note: When stage of captured individual is 7, U; ' is a matrix
with 1 in the ith row of the ith column and 0 elsewhere.

* X indicates the individual was not captured; numbers indicate
the stage of captured individuals.
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were used to model the survival and capture probabilities in studies of the roe deer ( Capre-
olus capreolus) and the common lizard (Lacerta vivipara), respectively (Lebreton et al.,
1992), and time has been used to model the survival probability of the northern spotted
owl (Striz occidentalis caurina)(Forsman et al., 1996) and the North Atlantic right whale
(Caswell et al., 1999).

Covariates are incorporated in the transition probability using a link function. The link
function must satisfy the constraint that each column of the transition matrix sums to 1,
and each entry of the matrix must lie between 0 and 1. A flexible function that satisfies
these properties is the polychotomous logistic function, which is derived by expressing the
log of the odds ratio as a linear function of the covariates (Hosmer & Lemeshow, 1989). Let

m§d) be the value of dth covariate at time £. The polychotomous logistic function is

e (g + a8
1+ 5, exp (agi + LaBipal?)

¢5i(t) (2.16)
where «j; is an intercept parameter, and ﬂ](?) is a slope parameter associated with the
dth covariate. When all the slope parameters are zero for all d, ¢, and 7, the transition
matrix is constant over time. The simple logistic function that is often used in mark-
recapture literatures (e.g. Burnham et al., 1987; Lebreton et al., 1992) is a special case of

the polychotomous logistic function for a binary outcome.

2.4 Matrix Population Models

Population projection matrices contain both transition probabilities and fertilities (see
Caswell, 2001). Because the transition probabilities are estimated by the MSMR method,
we can construct the projection matrix if we know the fertility terms. In this section, we
show an example of how those terms might be obtained, and how to compute confidence

intervals for population growth rate calculated from the population matrix.
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2.4.1 Conversion from a Transition Matrix to a Population Projection

Matrix

The right whale example provides enough information to write a 2-sex model. To do so,
we renumber the male stages in Figure 2.1 as 5, 6, 7. Letting ¢;;(t) denote the transition

probability as before, the projection matrix is

([ 0 RmR® R® of 0o 0 0
¢21(t) B22(t) 0 0 0 0 0
0 ¢32(t) ¢s3(t) ¢3al(t) 0 0 0

Ar= 0 ¢a2(t) ¢a3(t) 0 0 0 0 (2.17)
0 Fs(t) F(t) 0 0 0 0
0 0 0 0| ges(t) ¢es(t) 0
\ 0 0 0 0 0 ¢76(t) ¢r2(t)

The upper left and lower right blocks describe production of females by females and males
by males, respectively. The entries in the lower left block describe production of males by
females.

When constructing a population projection matrix, transition probability and fertility
terms are often estimated from two separate data sets (Caswell, 2001), but the fertility terms
can be directly estimated using the MSMR method if the stage structure includes mothers
that give birth between two consecutive sampling periods (i.e. stage 4 in our example).
Each time an individual enters this stage, it gives birth; therefore, transition probabilities
into the fertile stage are also probabilities of giving birth. If the number of female and
male births at each reproductive event are by and by, respectively, the fertility terms in the

projection matrix are given by the product of the number of offspring and the transition

probabilities:

Fy(t) = brgaa(t), (2.18)

28



F3(t) = broas(t), (2.19)
F(t) = bmdaa(t), (2.20)

Fi(t) = bmdus(t). (2.21)

An important assumption in these fertility terms is that mothers and their newborns have
the same capturability during sampling. To ensure that this condition is satisfied, when
mothers are captured, their offspring should also be captured and entered into the data as
new individuals. Similarly, when newborns were captured, their mothers should be captured
and identified as mothers. Later, we will show one example of remedial methods when the
equal capturability assumption is not met.

The model (2.17) is female-dominant; males do not affect population dynamics. This
assumption is often legitimate when the population size of males is large enough that search-
ing for a partner does not limit reproduction by females. Thus for calculation of population

growth rate, the two-sex matrix may be reduced to the female matrix

0 Fy(t) Fa(?) 0

A, - $21(t)  P2a(t) 0 0 (2.22)
0 ¢32(t) ¢33(t) ¢3a(t)
0 ¢a2(t) ¢a3(t) 0

2.4.2 Confidence Intervals for Population Growth Rate

The long-term population growth rate implied by a projection matrix A is given by the
dominant eigenvalue A of A;. A confidence interval for A can be approximated from the
MSMR statistics, using eigenvalue sensitivity formula and the covariance matrix of the
parameters.

The eigenvalue sensitivity formula is

oA . vjw;

_ , 2.23
Oaj;; <w,v> ( )
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where v and w are the left and right dominant eigenvectors of the population projection

matrix (Caswell, 1978, 2001). If the a;; are functions of some other parameters 0, the
sensitivity of A to 6, is

o o daj;
80, ;Z daji 00, (2.24)

Now let @ be a vector of parameters estimated by the MSMR method. An approximate

95% confidence interval for A is calculated by

~ o\ [ ox
X+ 1.96 el — | [ =1, 2.25
qur: v (‘99<1> (69"> (225)

where &g, is (gr)th entry of the estimated covariance matrix C. The covariance matrix C can

be estimated by inverting the Hessian matrix (the information matrix) (e.g. Burnham et al.,
1987). This method of constructing the confidence interval is an application of the delta
method (see Seber, 1982, Chapter 1), taking advantage of the existence of the eigenvalue

sensitivity formula (2.23).

2.5 Application to the North Atlantic Right Whale

We have applied the MSMR method to data on the North Atlantic right whale (Eubalaena
glacialis). The northern right whale is considered one of the most endangered large whale
species in the world (Waring et al., 1999). The current population in the western North
Atlantic contains fewer than 300 individuals. They migrate from the Bay of Fundy, which is
a summer feeding ground, to the coast of Florida, which is a winter calving ground. Caswell
et al. (1999) showed that the crude survival probability of individuals in this population
has been declining since 1980.

Data on the North Atlantic right whale have been collected by New England Aquarium
and consist of annual sighting histories of photographically identified animals from 1980 to
1997 (Crone & Kraus, 1990). For the purpose of our analysis, we consider individuals to

have been marked on the occasion of their first identification, and recaptured when they
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were resighted during a subsequent year. Of the 372 individuals used for the analysis, 141
are known to be females and 143 to be males. We assumed the remainder to be either
female or male with 50% probabilities. A few sightings of dead individuals exist but are

not included in this analysis.

2.5.1 Stage-assignment matrices

We attempted to assign each individual at each capture to one of the stages shown in
Fig. 2.1. A whale was considered mature if it was known to be at least 9 years old or,
for females, if it had been observed with a calf. Stages could be assigned with certainty
in 78% of the captures. The remainder were known to be either immature or mature, and
for these captures, we must calculate the entries ug, us, us, and ug of the stage-assignment
matrices (2.5) and (2.6). In the absence of information to the contrary, we assume that these
probabilities are constant over time and across individuals, but differ between females and
males. Because we use different criteria to assign females and males to stages, we expect
that the probability distribution of stages among the unknown staged captures would differ
for females and males.

When the stage of a captured individual is uncertain, the (2,2) entry of the stage-
assignment matrix is the probability that the individual is immature, given that the stage
is uncertain. Similarly, the (3,3) entry is the probability that the individual is mature, given
that the stage is uncertain. The other entries are all zero. To express these probabilities in
mathematical form, let X be a random variable giving the stage of an individual and ¥ be
a random variable taking the value 1 if the stage is known and 0 if the stage is uncertain.

Then the two probabilities are

upy = Pr(X=2]Y=0) (2.26)
ug = Pr(X=3Y=0)

= 1-u. (2.27)
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To calculate Pr(X = 2|Y = 0), we use Bayes’ Rule to derive:

Pr(X=2)—-Pr(X=2|Y =1)Pr(Y = 1)
1-Pr(Y =1) )

PrX=2Y=0)= (2.28)
Here, Pr(Y = 1) is the probability that the stage of a captured immature or mature

individual is known, and can be estimated from the capture history data as

Ny + N3

FP A (2.29)

Pr(Yy =1)=
where No, N3, and N, are numbers of captures of immature, mature, and uncertain stages,
respectively. Pr(X = 2|Y = 1) is the probability that the stage of a detected immature
or mature individual is immature given that the stage is known. This probability can be
calculated from the capture history data as

No

= ——— 2.30
N2 + N3 (2:30)

Pr(X =2jY =1)
Finally, Pr(X = 2) is the probability that the stage is immature given that the stage is either
immature or mature, regardless of whether the stage is known or uncertain. To estimate
this probability, we estimated the parameters for a time-invariant projection matrix from
the subset of the data containing only certain captures. From the stable stage distribution
w (i.e. the right eigenvector associated with the dominant eigenvalue) of this matrix, we
calculated the proportion of individual in stage 2 among stages 2 and 3 and used it as our
estimate of Pr(X = 2):

w2

For males, the same method was applied to the male stages (5 and 6). It should be noted
that these calculations work best when the capture probability of stages 2 and 4 (5 and 6
for males) are similar. Otherwise, each count in (2.29) and (2.30) should be divided by the
corresponding capture probability (Nichols et al., 1994). The end result of these calculations

is in ug = 0.87, ug = 0.13, us = 0.30, and ug = 0.70.
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2.5.2 Capture probabilities

Capture probabilities were modeled as binary logistic functions of estimated sampling effort
levels in the Northern and Southern regions, which are major feeding and calving grounds,
respectively. These effort levels were approximated by the number of sampling dates per year
in each region. We created models by including all possible combinations of effort levels for
all possible combination of stages. This resulted in 1024 models. The best capture model
among the 1024 candidate models was selected using Akaike Information Criteria (AIC;
Akaike (1973)). Because the sample size is large, we did not use the small sample adjustment
to AIC (i.e. AIC, in Burnham & Anderson (1998)). The differences in AIC between the
best and the second-best capture models was about 2, indicating that the support for
the best model relative to the second best model is high (Burnham & Anderson, 1998).
Furthermore, the 4 best models differ only in how capture probability of mothers depends
on effort, and in all cases the capture probability was consistently close to 1 throughout the
sampling period. Therefore, we used only the best model shown in Table 2. The capture
probabilities of immature males and females did not differ significantly in the best model
based on a likelihood Tatio test. Therefore, we set these two capture probabilities equal and

used the resulting capture probability model for further analysis (Table 2.5.2).

Table 2.2: Dependence of the best capture model for the North Atlantic right whale on
effort level and time.

Stage* Northern Effort Southern Effort
Immature Female (2) Yes Yes
Mature Female (3) Yes Yes
Mature Female with Calf (4) No No
Immature Male (6) Yes Yes
Mature Male (7) Yes Yes

* Sighting probability of calves cannot be estimated because the capture
of a calf is always the first capture of that individual.
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2.5.3 Transition Probabilities

Although we have shown the vital rates have varied over time (Chapter 5), for this example
we fit a model in which the transition probabilities are constant over time (i.e. no covariates).
We also assumed that the survival probabilities of female and male calves are the same.
This model gives a time-averaged picture of right whale demography. Estimated capture
and transition probabilities are shown in Fig. 2.2 and Table 2.3, respectively.

The population projection matrix for female right whales is

0 0.5¢s2v/ P31 0.5¢s3v/aa 0

0 0

A é21 $22 (2.32)
0 $32 $33 P34
0 P42 $a3 O

Table 2.3: Estimated transition probabilities for the North Atlantic right whale.

Transition Mean 95% Confidence

Probability Interval
P21 0.92 [0.74 0.98]
b22 0.86 [0.81 0.89]
$32 0.08 [0.06 0.12]
P42 0.02 [0.01 0.03]
P33 0.80 [0.77 0.83]
Pa3 0.19 [0.16 0.22]
$34 0.83 [0.77 0.88]
de6 0.76 [0.72 0.79]
$76 0.19 [0.16 0.23]
P77 0.95 [0.94 0.96]

Note: The confidence intervals were estimated

from 1000 parametric bootstrap samples generated
assuming multivariate normal distributions of

parameters. For the covariance matrix of the

distribution was estimated as the inverse of

the Hessian matrix (Burnham et al., 1987; Lebreton, 1995).
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Capture Probability

1

1982 1986 1900 1994
Year

Figure 2.2: Stage-specific capture probabilities for (a) immature male and female, (b) ma-
ture female, and (c) mature male right whales. Error bars indicate point-wise 95% con-
fidence intervals estimated from 1000 parametric bootstrap samples generated assuming a
multivariate normal distribution of the logit of parameters. The covariance matrix of the
distribution was estimated as the inverse of the Hessian matrix (see Burnham et al., 1987;
Lebreton, 1995). Mothers had a constant capture probability 0.99 (95% CI =[0.98, 1.00]).
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This matrix is the same as (2.22) but with a particular set of assumptions defining the
fertility terms. Consider Fy(t) in (2.22). When a female moves from stage 2 to stage 4
(with probability ¢42), she gives birth; the newborn is female with probability 0.5. To
appear as a calf in stage 1 at t + 1, the newborn calf must survive long enough to be
cataloged. Although newborn calves have distinct markings, they are harder to distinguish
individually than other stages. Therefore, calf survival is estimated from the time when
the calf is seen sufficiently well to permit identification, which is not necessarily on its first
sighting. We assumed calves are identified on average midway through their first year,
and that the mother must survive this long (with probability ¢3) in order for the calf to
survive. F3(t) is calculated in a similar manner.

From this matrix, we estimated the long term population growth rate and its confidence
interval. They are A = 1.01 (95% CI =[1.00, 1.02]). This result shows that the North
Atlantic right whale population has been growing by 1% annually on average from 1980 to
1997. (In fact, a time-varying model estimated by this same procedure concludes that the
growth rate has declined from A = 1.03 to A = 0.98 over this time period Chapter 5) This
matrix can now be analyzed to obtain the stable stage distribution, reproductive value,

damping ratio, sensitivity and elasticity of A, and other demographic statistics.

2.6 Discussion

-The method presented here estimates a population projection matrix from mark-recapture
data, which is one of the most commonly available data types for animal populations.
Once the population projection matrix is estimated, it is subject to complete demographic
analysis; such analyses provide powerful tools for conservation biology (e.g Caswell, 1989;
Tuljapurkar & Caswell, 1997; Caswell, 2001). They can be used to assess the causes of
past population declines, and to predict the effect of possible future management actions.
Because population projection matrices contain many parameters, it has been difficult to

estimate them accurately. This has been especially true for animals that are not captured
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at every sampling period.

The likelihood calculations here are simpler than those described in Nichols et al.
(1992b). This allows the use of mathematical software packages such as MATLAB, so the
transition and capture probability models need not be limited to those available in mark-
recapture packages such as MARK (White & Burnham, 1999) , Mssurviv (Hines, 1994), or
Surviv (White, 1983).

Our method permits the use of capture histories with uncertain stage and sex. Individ-
uals with such uncertainties tend to have lower survival rates than the rest of a population
because individuals that survive longer have more chances for accurate assessment of stage
and sex identification. For example, right whales are considered mature at 9 years of age.
If animals that die within 9 years from their first capture are excluded because their stage
is uncertain, then we would overestimate the survival probability. Observations with un-
certain stage or sex should not be discarded in parameter estimation. Our approach is one
way to deal with this problem.

The stage structure we used in this paper contains as a stage females that have given
birth between consecutive sampling periods. This stage makes the conversion of the tran-
sition matrix into a population projection matrix relatively simple. Because the purpose of
the MSMR statistics often is to estimate a population projection matrix, we recommend
the use of this type of stage structure when possible.

The polychotomous logistic function is a flexible way to allow transition probabilities
to decrease or increase with a covariate while satisfying the requirement that each column
of the transition matrix sum to one. When time is used as a covariate, the polychotomous
function allows inferences about temporal trends in stage-specific transition rates. This
approach has been applied to the North Atlantic right whale data (Chapter 5).

Multi-stage mark-recapture data arise in many applications. For example, Nichols &
Kendall (1995) use them in population genetics context to test trade-offs between survival
and reproduction. Hestbeck et al. (1991) use them to estimate spatial movement of indi-

viduals. We have applied them to deal with the problem of temporary emigration (Chapter
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3). We hope the extentions of the analytical method presented here will make them even

more useful.

Mark-recapture data are expensive to collect, and they should be analyzed as completely
as possible. If information on the stage of individuals (e.g., age, size, other developmental
stages, or geographic locations) is collected in addition to the basic mark-recapture data,
then MSMR statistics can be applied. The stage information need not be complete because
our method incorporates uncertainties in stage identifications. The value of being able to
use matrix population models for conservation makes it worthwhile to collect stage-specific

data whenever possible.
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Chapter 3

A general approach to temporary
emigration in mark-recapture
analysis

3.1 Introduction

In mark-recapture studies, survival probability is estimated from capture histories of in-
dividually identified animals. Those histories contain information on whether or not each
individual was captured at each sampling occasion. The analysis assumes that all individu-
als have identical capture probabilities. This assumption is violated when some individuals
temporarily leave the sampling area and return during subsequent sampling occasions. We
refer to this as “temporary emigration.” The capture probability of the individuals that
have emigrated is zero, while the rest of individuals that are alive have a non-zero capture
probability. Therefore, assuming that all individuals have the same capture probability,
regardless their location, results in under- and over-estimation of the capture probabil-
ity for individuals inside and outside the sampling area, respectively. The biased capture
probability estimate often biases survival probability estimates.

The temporary emigration process we consider in this paper is deterministic; i.e., we
assume that all animals in the sampling area emigrate, with probability 1, before the next
sampling occasion. This type of temporary emigration process is common during imma-

ture stages and between reproductive events. We refer to these as the “immature emigra-
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tion process” and “inter-birth emigration process,” respectively. For example, albatrosses
(Diomedeidae spp.) leave their breeding islands immediately after fledging (immature em-
igration process) and do not return for 5-15 years. Once they return, they are recaptured
only when they breed (inter-birth emigration process) (Weimerskirch et al., 1997). Simi-
larly, grey seals (Halichoerus gryprus) are marked when young, but cannot be recaptured
before they mature (immature emigration process) (Schwarz & Stobo, 2000). Right whales
(Eubalaena sp) are monitored at their calving ground, which they leave after reproduction
and return at intervals of several years for calving (inter-birth emigration process) (Payne
et al., 1990). Similarly, sea turtles are often individually identified only at their natal beach
when they come back to lay their eggs (inter-birth emigration process).

Deterministic temporary emigration is different from permanent emigration and purely
random temporary emigration, which are also common. Permanent emigration occurs when
animals leave the sampling area and never come back. In usual mark-recapture analyses,
permanent emigration is either assumed to be a part of mortality as a loss from a population
(e.g. Lebreton et al., 1992) or assumed not to occur (e.g. Caswell et al., 1999). In purely
random temporary emigration, individuals leave and return independently of their location
at the previous sampling occasion. This type of temporary emigration occurs commonly
when only a part of a habitat is sampled. When mark-recapture methods are applied
to a population exhibiting purely random temporary emigration, the estimated capture
probability is the product of the probability that individuals are in the sampling area and
the probability that individuals within the sampling area are captured. However, survival
probability is not affected by the emigration process (Brownie et al., 1993).

In this paper, we show how to estimate survival probability and other demographic
transitions in the presence of deterministic temporary emigration. Our method includes
location (temporarily emigrated or not) as a property of the individual and uses a multi-
stage mark-recapture method. Our approach is related to the methods used by Arnason
(1972), Arnason (1973), and Hestbeck et al. (1991) to estimate movement rates, but applies

to populations that exhibit temporary emigration. Because individuals that have emigrated
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are unobservable, the capture history data usually do not contain enough information to
estimate all parameters separately. In order to add necessary information, we introduce con-
straints among the parameters. These constraints may be based on biologically reasonable
models (e.g., that temporary emigration does not influence survival), or may be provided by
independent estimates of some parameters from other data sets. The constraints reduce the
number of parameters to be estimated, and allow us to estimate all the remaining parameter
values separately. The possibility of modeling mark-recapture data with stage structures
that contain unobservable stages was suggésted by Lebreton (1995). Here, we apply the
idea to populations that exhibit the two types of temporary emigration and analyze the
estimability of parameters. Our results generalize those of Clobert et al. (1994), Lebreton
et al. (1999), and Pradel & Lebreton (1999) in that we apply the method to inter-birth
temporary emigration, analyze more general cases of immature temporary emigration, and
use a formal method to determine estimable parameters.

As usual, estimating stage-specific transition and capture probabilities involves con-
structing an appropriate stage structure, expressing the likelihood function in terms of
the parameters, and finding the best fit parameter values using maximum likelihood (e.g.
Nichols et al., 1992b, also Chapter 2). The likelihood function can be written down directly
using Markov chains that specify transition probabilities among stages, assuming indepen-
dence of fates among individuals (i.e. assuming the number of outcomes falling into the
possible capture history sequences is multinomial) (Caswell, 2001, also Chapter 2). This
likelihood can be maximized numerically to find the best fit parameter values. This method
allows simple programming using software such as MATLAB. Alternatively, in many but
not all cases, parameters can be estimated using softwares that are specifically designed for
mark-recapture analyses such as MARK (White & Burnham, 1999), MSSURVIV (Hines,
1994), and Surviv (White, 1983).

41




3.2 Temporary-emigration stage structures

Figures 3.1 and 3.2 show examples of life cycle graphs including temporary emigration.

Each arrow indicates a possible stage transition from time ¢ to £+1 and has a transition
probability associated with it. We denote the transition probability from stage ¢ to j by
¢ji- It should be noted that the subscripts for the transition probability are reversed from
the traditional notation (e.g. Arnason, 1973; Hestbeck et al., 1991) so that they indicate the
entry in a matrix population model (e.g. Caswell, 2001) and the column stochastic transition
matrix used in Chapter 2. Individuals in a capturable stage have a non-zero probability of
being recaptured. This probability is denoted by p; for stage i.

The stage structure for the inter-birth emigration process (Fig. 3.1a) includes a breeding
adult stage (stage 1) in which individuals can be recaptured with a probability p;, and
k — 1 inter-breeding adult stages in which individuals cannot be recaptured. The value of
k depends on the minimum inter-birth interval. For example, Wandering Albatrosses never
breed successfully in two consecutive years (Weimerskirch et al., 1997). Those that give
birth in one year will be missing from the breeding ground in the following year. After two
years, they return to the breeding ground with some probability that is independent of age.
Therefore, k = 2 for Wandering Albatross (Fig. 3.1b). Similarly, individual right whales do
not give birth for at least two years after successful reproduction, so k = 3 for the right
whale (Fig. 3.1c).

The stage structure for the immature emigration process (Fig. 3.2a) contains a newborn
stage (stage 0) in which individuals are first captured and marked, k — 1 immature stages
(stage 1 through k—1) in which individuals cannot be captured due to temporary emigration,
and a mature stage (stage k) in which individuals can be captured with a probability p.
If k > 1, the first k — 1 stages (i.e. newborn and the first ¥ — 2 immature stages) represent
individuals that cannot mature before the following sampling period, and these stages also
correspond to ages of individuals. Stage k— 1 may mature (with probability ¢ x-1), remain

immature (with probability ¢x_1x-1), or die (with probability 1 — (Pr-1,-1 + Prp—1))
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Capturable Non-capturable
(a) (breeder) (non-breeder)

(b)

(c)

Figure 3.1: Inter-birth temporary-emigration stage structures. (a) General stage structure.
(b) Stage structure with k = 1. This represents the temporary emigration of Wandering
Albatross. (Models 1.1, 1.2, and 1.3). (b) Stage structure with k = 2. This represents
the temporary emigration of the right whale. (Models 2.1, 2.2, and 2.3). Parameters for
these stage structures are ¢;; a transition probability from stage j to 1, and p; a capture
probability of stage 1. Stages other than stage 1 have a zero recpature probability.

43




(a) Capturable Non-capturable

(b)

(c)

Figure 3.2: Immature temporary-emigration stage structure. (a) General stage structure.
(b) Stage structure with k = 4. This represents the temporary emigration of the grey seal.
(Models 3.1, 3.2, 3.3, 3.4, and 3.5). (c) Stage structure with k = 5. This represents the
temporary emigration of Wandering Albatross. (Models 4.1, 4.2, 4.3, and 4.4). Parameters
for these stage structures are ¢;; the transition probability from stage j to ¢, and py the
recapture probability of the mature stage. Stages other than stage k have a zero recpature

probability.
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For example, grey seals do not give birth before reaching age 4 (Schwarz & Stobo, 2000).
Therefore, an appropriate stage structure for them is one with k = 4 (Fig. 3.2b). Similarly,
albatrosses do not mature before reaching the age of 5 (Weimerskirch et al., 1997); therefore,
k = 5 in their stage structure (Fig. 3.2c). When k = 1, the stage structure does not contain
a separate immature stage (i.e. newborn and immature stages are the same), and newborn
individuals can mature directly or remain immature. In this stage-structure, immature
individuals can be marked but cannot be recaptured; therefore, they still exhibit temporary
emigration. These stage structures include as special cases the model of Clobert et al.
(1994), but relax their assumption of a maximum age in immature stage.

Other population parameters (e.g., stage-specific survival probabilities, stage-specific
probabilities of death, and probabilities of breeding) can be calculated from the ¢;;. For
examples, the stage specific survival probability (s;) is given by >, ¢;; and the stage specific
probability of death is given by 1—3"; ¢;i. In the immature emigration model, the breeding
probability, conditional on survival of individuals in stage k£ — 1 (we denote this probability

by ) is

Dk k-1
= d . 3.1
Ok k-1 + Pr—1,k-1 (3.1)

We will show how to calculate some other population indices in Section 6. More details can

be found in (Caswell, 2001).

3.3 Estimability of parameters

Unfortunately, some of the parameters in the stage structures for temporary emigration
processes may not be estimable, because of the lack of observations of the emigrated stages.
In general, whether best-fit parameter values can be found uniquely or not depends on how
the parameters appear in the likelihood function. If two or more parameters are confounded
(i.e. they appear only in the same arithmetic form throughout the likelihood function), they
cannot be estimated separately. The solution is to impose constraints on the parameters

by specifying a model for the relationships among them.
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Confounded parameters may result from model specification (intrinsic identifiability
problem) or a lack of variation among observed data (extrinsic identifiability problem)
(McCullagh & Nelder, 1989). When parameters are intrinsically confounded, the only way
to eliminate the problem is to constrain parameters or modify the stage-structure so that
other useful parameters can be estimated separately. When parameters are confounded
because of lack of variation among observed data, the solution is to constrain parameters,
modify the stage-structure, or increase the sample size. We will show how to determine
whether model has the intrinsic and extrinsic identifiability problems or not in the next

section and give examples in Section 4 and 5.

3.3.1 Determining estimability of parameters

Whether parameters are confounded in the likelihood function or not can be determined
using the method of Catchpole & Morgan (1997). Their method uses the Jacobian matrix,
which contains the derivatives of the likelihood functions with respect to parameters. If the
rank of the Jacobian equals the number of parameters, then all parameters can be estimated
separately. Here, we give a heuristic description of the method as it applies to temporary
emigration models; for details see Catchpole & Morgan (1997).

We start with data consisting of capture histories of n individuals. The contribution
of individual i to the likelihood function is proportional to the probability of its capture
history. Let I; be this contribution and assume that the model contains m parameters (z1,

Z2, ..., Tm). Then, l; is a function of the parameters:
li = fi(z1, 22, Tm)- (3.2)

Taking the partial derivatives of the function I; with respect to the parameters results in

o 3fi 6fi afi
dl; = o dz; + B dzy + ... + ——medxm' (3.3)

Because the data consist of n captured individuals, n such functions exist. In a vector
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notation, they are:

dl = Jdx (3.4)
where,
T
dl= ( dll dly dlg dln ) )
T
dxz(dxl dzy - dxm) )
on  oh bh
dz1 Ozx2 t Orm
o 9 on
dxy Oz T Ozm
3=| o o o
dxr1 Oz t OTm
8fn Ofn Ofn

Here, J is the Jacobian matrix of the likelihood function with respect to the parameters.
Equation (3.4) is a system of linear equations with J as a coeflicient matrix. For x to
be estimated uniquely, the Jacobian matrix must map dx to dl uniquely. This requires
that the rank of the Jacobian matrix be m (i.e. columns of the Jacobian matrix must be
independent). Therefore, if the rank of J is equal to the number of parameters, values for the
parameters can be estimated separately using the maximum likelihood method. Otherwise,
some parameters cannot be estimated separately, and the number of parameters that can
be estimated separately is given by the rank of J.

If multiple individuals have the same capture history sequence, the likelihoods associated
with their capture histories are the same. Therefore, only one such copy needs to be
included in the likelihood vector, and the duplicated likelihoods can be eliminated. If we
do the analysis assuming that every possible capture history is observed at least once for
each stage structure, then the above analysis can be used to detect intrinsic identifiability
problems. On the other hand, if we use likelihood associated with the available capture

history sequences, the analysis can be used to detect extrinsic identifiability problems.
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3.3.2 An example of the Jacobian method

As an example, we apply the above method to the inter-birth emigration model with k = 2
(Fig. 3.1b). We assume all individuals are marked at the first sampling occasion, and there
are 4 subsequent sampling occasions for recaptures (i.e. 5 capture occasions). Under these

assumptions, there are five possible capture histories:

hy = 10101,
ha = 10100,
hs = 10001,
hs = 10010,
hs = 10000,

where 1 indicates an individual was captured and 0 indicates it was not captured.

The likelihood functions corresponding to these capture histories are:

b= pi¢hieéhs, ' (3.5)
b= méndz —pidhéh (3.6)
b= [$hidr12(l — p1) + da1635]¢10m (3.7)
la= pménadadialda + (1 - ¢n)l (38)
ls = 11—l —Ilr—13— 14 (3.9)

A likelihood function can be determined by creating a list of event sequences that could
lead to the capture history, calculating the probability of the sequences, and then summing
the probabilities. For example, h; can only arise for an animal that makes the transition
back to stage 1 immediately after each observation occasion in stage 2, and is observed
on each occasion it is in stage 1. The corresponding likelihood function (equation 3.5)

is simply the product of this unique sequence of transition and recapture probabilities,
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with some collection of terms. Likelihood functions Is through Iy are more complicated
because more than one sequence of events can lead to the observation sequence hy through
ha. For example, hs could arise from an animal that remained in stage 2 during sampling
occasions 2-4 and then made the transition to stage 2 for sampling occasion 5 and was
recaptured. However, this sequence could also arise if the animal went through the same
stage transitions that produced h;, but was not recaptured during sampling occasion 3. ls
is calculated simply as the probability that capture histories h; through hy do not occur.
There are 4 parameters (p1, ¢21, $22, and ¢12) and 5 likelihoods; therefore, the Jacobian
is a 5x4 matrix. Its rank is the number of independent columns in J. The Jacobian and its
rank can be found easily using software for symbolic calculations; we used the SYMBOLIC
MATH TooLBOX in MATLAB. The rank of the Jacobian is 3, so only 3 of the 4 parameters
can be estimated separately; therefore, this model has an intrinsic identifiability problem.
This does not necessarily imply that any 3 parameters can be estimated; we include a

discussion on which 3 parameters can be estimated in the next section.

3.4 Estimable parameters in temporary emigration models

To evaluate estimability of parameters in selected temporary emigration models, we applied
the Jacobian method to 15 models based on the four stage structures in Fig. 3.1b, 3.1c, 3.2b,
and 3.2c. Table 3.1 lists the models and also shows (1) constraints on transition probabilities,
(2) parameters whose values are assumed to be known, (3) the number of parameter to
be estimated, and (4) the rank of the Jacobian matrix. After imposing constraints and
eliminating known parameters, all the remaining parameters become estimable in some
models, which are indicated by (*).

Consider the inter-birth emigration model of Wandering Albatross (Fig. 3.1b, k = 2).
Adults can be captured on the breeding grounds, but then disappear until they breed next.
If no constraints are placed on the parameters (Model 1.1), the rank of the Jacobian is 3,

so we can estimate only at most 3 of the 4 parameters. However, this does not imply that
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any 3 parameters can be estimated. For example, if p; is known independently (Model 1.2),
the number of parameters is reduced to 3, but the rank of the Jacobian is reduced to 2.
On the other hand, we can fit a model that assumes that survival probability of breeding
and non-breeding adults is the same, which implies the constraint ¢2; = ¢12 + ¢22 (Model
1.3). In this model, both the number of parameters and the rank of the Jacobian are 3,
indicating that all three parameters can be estimated.

For the inter-birth emigration model of the right whale without constraints (Model 2.1),

the rank of the Jacobian is 3, while the number of parameters is 5. If we assume that

Table 3.1: Parameter constraints, number of parameters, and the rank of the Jacobian
matrix for the 15 temporary emigration models. * indicates that values of all the free

parameters are estimable.

Species Model Constraints on Parameters set Number of Rank of
survival probabilities to known values parameters Jacobian
Albatross 1.1 none none 4 3
(Fig. 3.1b) 1.2 none P 3 2
1.3* P21 = P12 + P22 none 3 3
Right Whale 2.1 none none 5 3
(Fig. 3.1c) 2.2 none p1 4 2
2.3*% $21 = P32 = 13 + P33 none 3 3
Grey Seal 3.1 none none 6 3
(Fig. 3.2b) 3.2% ¢10 = 21 = ¢32
= (¢33 + ¢43) = P4 none 3 3
3.3* b10 = P21 = P32
= (¢33 + ¢43) P4 3 3
3.4* $21 = P32
= (¢33 + P43) = Paa D4 3 3
Albatross 4.1 none none 7 3
(Fig. 3.2¢c)  4.2*  ¢10=d21 = ¢32 = Pu3 '
= (a4 + P51) = P55 none 3 3
4.3*  ¢10= ¢ = P32 = ¢u3
= (¢4 + P54) Ps 3 3
4.4* ¢ = ¢32 = Pu3
= (¢aa + ¢54) = P55 Ps 3 3
4.5* Logistic Model? D5 3 3

1: See Equations (3.10)-(3.17)
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survival probability is unaffected by reproduction (¢21 = ¢32 = 13 + ¢33; Model 2.3), both
the rank of the Jacobian and the number of parameters become 3, indicating that all the
three remaining parameters (¢13, ¢33, and p1) can be estimated.

For the immature emigration model of the grey seal without constraints (Model 3.1), the
rank of the Jacobian is 3, while the number of parameters is 6. While keeping the rank of
the Jacobian at 3, we can reduce the number of parameters to 3 in several ways depending
on assumptions on how mortality varies among the emigrated stages. Here we show some
specific examples. Model 3.2 assumes that survival probabilities of all stages are the same.
Under this assumption the three parameters ¢33, ¢43, and ps can be estimated separately,
which also provides estimates of the survival of other stages (¢21, @32, and ¢44). The next
two models use an independent estimate of the capture probability of stage 4 (p4). This
permits estimation of an extra survival probability. For example, Model 3.3 assumes that
all immature stages (0, 1, 2, and 3) have the same survival probability, which may differ
from that of adults (stage 4). Model 3.4 assumes that the survival of newborn individuals
(stage 0) may differ from that of all other stages.

The capture probability ps required for Models 3.3 and 3.4 could be obtained using
Pollock’s robust design (Pollock, 1982) if multiple samples of the mature individuals are
collected within each primary sampling occasion, or by using a Cormack-Jolly-Seber type
mark-recapture method (e.g. Burnham et al., 1987; Lebreton et al., 1992) if capture histories
of the mature individuals over multiple sampling occasions are available. The latter method
is used by Clobert et al. (1994) to estimate survival probability and age-specific breeding
probability. This method also provides a separate survival probability estimate for mature
stage (¢pa4). This survival probability could also be provided in these models, reducing both
the number of parameters and the rank of the Jacobian by one.

The situation for the immature temporary emigration models for Wandering Albatross
is the same as the grey seal models. After reducing the number of parameters by assuming
that sgrvival probability of all stages are the same (¢21 = P32 = P43 = daqa + P54 = P55

Model 4.2), we can estimate all remaining parameters (@aa, ¢s4, ps). Alternatively, different
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distributions of survival probability during temporary emigration can be used. Model 4.3
assumes that survival probability is the same for the first 4 stages (P21 = 32 = a3 =
daa + Ps4) and a separately estimated capture probability (ps) is provided. Then we can
estimate the remaining three parameters (@as4, @54, and ¢s5). Similarly, model 4.4 assumes
that survival probability is the same for the last 4 stages (32 = Pa3 = Paa + P54 = ¢55) and
ps is provided. Then we can estimate @21, 44, and ¢Ps4, separately. This result suggests
that the length of temporary emigration in our immature emigration model does not change
the number and types of parameters that can be estimated.

Another approach to constraining parameters in the immature temporary emigration
models is to write the survival probability as a parametric function of the stage and estimate
the parameters in that function. For example, with the stage structure of Wandering
Albatross, we might model the survival probability as a logistic function of age with the last
immature stage and mature stage having the same survival probability. In many organisms,
survival probability increases with age; therefore, this model may be realistic in many cases.
Let s; be survival probability of individuals in stage 7, then

exp (y + 01%) .
= fori=0,...,4 1
1+ exp (v + 07) ort=0,...4, (310)

%

where v and § are intercept and slope parameters. From the survival probability, transition

probabilities can be calculated as

por = so (3.11)
¢ = 51 (3.12)

(3.13)
$a3 = 83 (3.14)
$pra = (1—9)sq (3.15)
$sa = sy (3.16)
$s5 = S5, (3.17)
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where 1 is the probability of transition from stage 4 to stage 5 conditional on survival. If

ps is known, the rank of the Jacobian is 3, permitting estimation of 7, 8, and ¢ separately.

3.5 Bias caused by temporary emigration

To examine the bias of the estimates, we applied Models 1.3, 2.3, 3.4, 4.2, and 4.5, shown in
Table 1, to simulated data. Each simulated data set contained 75 individuals marked at the
first sampling occasion. For each individual, the stage at the next sampling occasion was
selected at random from the possible states (including death) with probabilities given by
the column of the transition matrix corresponding to the current stage. An individual in a
capturable stage was captured randomly with a probability equal to the capture probability
of that stage. For Models 1.3 and 2.3, the data sets consisted of 9 resampling occasions; for
Models 3.4, 4.2, and 4.5, sequences of 19 resampling occasions were generated.

From the data we estimated the parameters in the corresponding model. This process
was repeated to obtain 1000 sets of parameter estimates. From the.same data, we also
estimated survival probability under the erroneous assumption that there was no temporary
emigration, using the Cormack-Jolly-Seber method (Cormack, 1964; Jolly, 1965; Seber,
1965) with constant survival and capture probabilities.

Table 3.2 compares the values of parameters that were used to generate data and the
means of 1000 estimates for the five models. Biases in both capture probability and transi-
tion probability are very small. Model 1.3 performs most poorly, but even here, the survival
probability (@22 + $12) appears to be without bias. On the other hand, Table 3.3 compares
actual values and the means of 1000 estimates under the false assumption that there was
no temporary emigration. Assuming there was no temporary emigration while there was
in fact temporary emigration caused overestimations of survival probability for Models 1.3
and 2.3 and underestimations for most stages in Models 3.4 and 4.2, showing that these
biases are a serious problem.

In the parameter estimation processes above, we were not always able to estimate pa-
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rameters. Under Models 1.3 and 2.3 with 75 marked individuals, about 14% and 9%,

respectively, of the numerical optimization failed to converge. These appear to be primar-

Table 3.2: Actual and mean of estimated parameters for Models 1.3, 2.3, 3.4, 4.2, and 4.5.
Values in parentheses are standard deviations. Results based on simulating 1000 replicate
datasets.

Model  Parameter Actual Value Mean Estimate (SD)

Model 1.3 P1 0.80 0.79 (0.09)
@22 0.40 0.38 (0.08)
®12 0.50 0.52 (0.08)
Model 2.3 D1 0.90 0.90(0.06)
P33 0.30 0.30 (0.06)
o13 0.60 0.60 (0.05)

Model 3.4 P4 0.90 known
d10 0.50 0.50 (0.10)
P33 0.40 0.40 (0.08)
P43 0.50 0.51 (0.08)
Model 4.2 D5 0.80 0.80 (0.02)
da4 0.45 0.45 (0.06)
P54 0.50 0.50 (0.06)

Model 4.5 23 0.80 known
¥ 1.3863 1.40 (0.36)
0 0.3895 0.39 (0.13)
P 0.4737 0.46 (0.07)

Table 3.3: Estimated capture and survival probabilities wrongly assuming no temporary
emigration (simple Cormack-Jolly-Seber model with constant capture and survival proba-
bility). Data were generated assuming Models 1.3, 2.3, 3.4, and 4.2. Values in parentheses
are standard deviations. Results based on simulating 1000 replicate datasets.

Model Parameter Actual Value  Mean Estimate (SD)
Model 1.3 Capture Probability (p)  0.80 for stage 1 0.20 (0.02)
Survival Probability (s) 0.90 0.94 (0.02)
Model 2.3 Capture Probability (p)  0.90 for stage 1 0.14 (0.01)
Survival Probability (s) 0.90 0.98 (0.01)
Model 3.4 Capture Probability (p) 0.90 for stage 4 0.52 (0.05)
Survival Probability (s) 0.5 for stage O
0.9 for stage > 0 0.83 (0.03)
Model 4.2 Capture Probability (p) 0.80 for stage 5 0.63 (<0.01)
Survival Probability (s) 0.95 0.72 (<0.01)
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ily caused by extrinsic identifiability problems as repeating the analysis with 150 marked

individuals reduced the incidence of non-convergence to 5% and 1%, respectively.

3.6 An example: the right whale

As an example, we apply our method to data on the North Atlantic right whale (Eubalaena
glacialis). This is one of the most endangered mammal populations in the world, currently
consisting of fewer than 300 individuals. There is evidence to suggest that this number is
slowly declining because of declined survival probability (Caswell et al., 1999). The right
whale is found along the east coast of the United States. In summer, they feed in the
northwest Atlantic, including Massachusetts Bay, Great South Channel, Bay of Fundy, and
Brown’s Bank. In winter, some females migrate to the coast of Florida and Georgia for
calving. Their inter-birth interval is 3-5 years.

The capture history data we use here are based on photographs taken by members of
the North Atlantic right whale consortium during annual surveys along the east coast of the
United States. Because right whales have unique markings called callosity patterns on their
heads, individuals can be identified from photographs. Based on these photographs, the
New England Aquarium has been accumulating capture history data of individuals since
1980. Here, we use only sightings of mothers (i.e. females with their calf). We consider
individuals to have been marked on the occasion of their first identification as mothers, and
recaptured when they were resighted with a calf during a subsequent year. If the data had
actually been collected this way, females would exhibit an inter-birth temporary emigration
with an interval of at least 3 years. This corresponds to the data structure in the ongoing
study of southern right whales (Eubalaena australis) in their breeding ground off Peninsula
Valdes, Argentina (Payne et al., 1990).

We use the stage structure shown in Figure 3.1c. This stage structure is consistent with
the fact that right whales do not give birth for at least two years after successful repro-

duction. Because previous analyses have detected time-variation in survival and transition
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probabilities (Caswell et al., 1999), we divided the data into two periods, 1980-1988 (¢t = 1)
and 1989-1997 (t = 2). Transition and survival probabilities are assumed constant within
each period. We further assumed that the survival probabilities are the same for all stages
(Model 2.3). The Jacobian indicates that this model, given the available data, is identifi-
able. Because individuals in stage 3 have three possible fates (remaining in stage 3, moving
to stage 1, and death) the probability of which must sum to 1, the transition probabilities

(¢13 and ¢33) in each period (¢ = 1,2) were modeled with polychotomous logistic equations:

® exp (o)
¢1s = 1+ exp (o) + exp (Bt) (3.18)
6% = o () (3.19)

" 1+exp (o) +exp(B)’

where o; and §; are the parameters to be estimated. Because the model assumes that the

survival probability of all stages are the same, ¢§? = ¢§t2) = ¢§t3) + qbgg) We expressed the

likelihood associated with the data using the method in Chapter 2, and the negative log

of the likelihood was numerically minimized using MATLAB function fminu to estimate the

six parameters (p1, p2, a1, a2, B1, and F2).

To compare the estimated parameters between the two periods in terms of demographic

context, we calculated survival probability as
s® = {3 + 43. (3.20)
We also calculated the number of reproductive events based on Markov chain theory:

RO —F (1-40)7, (3.21)
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where

fi 0 0
A0 = | 30 o o (3.22)

0 953 85
100
F = 00 0 (3.23)

0 00

’

and I is the identity matrix. The value 717 gives the expected number of future reproductive
events from a female that has just given a birth. More details of this calculation can be
found in Chapter 2.

Figure 3.3 compares survival probability and expected number of reproductive events
between the two periods. Error bars in the figures are point-wise 95% confidence intervals
based on a parametric bootstrap sampling procedure. We drew bootstrap samples of the
four parameters &), a(®, B(l), and B(Q) from a multivariate normal distribution, with
mean vector equal to the maximum likelihood estimates and covariance matrix calculated
from the inverse of the last Hessian matrix obtained during model fitting. A thousand
bootstrap samples were generated and, for each bootstrap sample of the parameters, the
survival probabilities and expected number of reproductive events were calculated. The 95
% confidence intervals for these parameters were defined by the 2.5 and 97.5 percentiles of
the simulated distributions. ‘

As expected, Figure 3.3 shows confidence intervals for survival and reproductive events
are wide because of the small sample size. However, the results suggest that both survival
and the expected number of reproductive events have declined. This result is consistent
with the previous finding in Fujiwara & Caswell (2001) although the declines revealed by

the analysis of the full data set are greater than those found here.
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Figure 3.3: Analyses of North Atlantic right whale data. (a) Survival probability of females
that have previously given birth at least once during periods between 1980 and 1988 and
between 1989 and 1997. (b) Expected number of future reproductions during the lifetime
of females that have given birth at least once.

3.7 Discussion

Temporary emigration causes an extreme case of heterogeneity in capture probability. Tem-
porarily emigrated individuals have zero capture probability, while the rest of individuals
have a non-zero capture probability. Ignoring temporary emigration when it exists leads to

biased estimates of survival probability. By explicitly modeling the emigration process, the
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method presented in this paper eliminates this bias.

The temporary emigration problem is often encountered in sampling large animals such
as seabirds, sea turtles, and marine mammals. When the same problem is encountered with
smaller organisms such as fish or insects, researchers may be able to eliminate the temporary
emigration problem by experimental manipulation. For example, it has been suggested that
when organisms can be marked and released into unobservable stages in the inter-birth
temporary emigration stage structures (e.g., Models 3.1 and 4.1), all the parameters may
be estimated separately (G. White, personal communication). In such cases, the methods
outlined here to determine the estimability of parameters are still useful.

Our results are complementary to the approach of Kendall et al. (1997) and Kendall
(1999), who use the Pollock’s robust design method (Pollock, 1982) to deal with tempo-
rary emigration. In their method, a closed population model is used to estimate capture
probabilities, which are incorporated into an open population model to estimate survival
probabilities. This method has an advantage over our method in that it permits estimation
of survival probabilities that vary freely from one sampling occasion to the next. The ro-
bust design method, however, requires multiple secondary samplings within each primary
sampling period in order to obtain information on the capture probability. The method
presented here does not require secondary sampling, although it can be combined with the
robust design method when such samples are available.

In this paper, we focused on two stage structures, representing two different emigration
processes, and considered only selected constraints on the parameters. We emphasize that
the method can be applied to any biologically interesting age- or stage-classified life cycle,
with any pattern of observed and unobserved stages. Each such structure may admit several
choices for constraining parameters to make estimation possible. Choosing biologically
relevant constraints is part of the data analysis process. We are certain that many useful

stage structures and parameter constraints exist and are yet to be discovered.
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Chapter 4

Estimating dispersal kernels from
individual mark-recapture data

4.1 Introduction

A dispersal kernel is a probability density function for the location of an individual at time
t+1 (t=0,1,2,...) conditional on the location of the individual at time ¢. This kernel
is often incorporated in an integrodifference equation to model movements of individual
organisms (e.g. Kot et al., 1996; Van Kirk & Levis, 1996; Van Kirk & Lewis, 1999; Lewis &
Pacala, 2000; Neubert & Caswell, 2000; Neubert et al., 2000; Clark et al., 2001b). When the
kernel is the probability density function of the Normal distribution (Gaussian distribution),
the corresponding integrodifference equation model is a discrete-time equivalent of a simple
diffusion process. The dispersal kernel can take other shapes to represent different hypothe-
ses about movements of individuals (Neubert et al., 1995). For example, organisms may
tend to either stay where they are or to travel long distances when they decide to travel.
Such a movement pattern can be modeled with leptokurtic probability density functions
such as the Laplace and Cauchy density functions. In fact, leptokurtosis is a ubiquitous
feature of dispersal data in ecology (Okubo, 1980; Kot et al., 1996).

Recent studies in theoretical ecology have shown that different movement patterns (i.e.
different shapes of the kernels) can produce qualitatively different population dynamics.

For example, Kot et al. (1996) showed that invading organisms with frequent long-distance
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dispersals (i.e. “fat-tailed” dispersal kernels) can have an accelerating speed of invasion.
Clark (1998) showed that a dispersal pattern modeled by the fat-tailed kernel can explain
the extremely fast spread of trees during the Pleistocene. In other studies, Kot (1989) and
Neubert et al. (1995) showed that dispersal-driven instability may produce stable spatial
patterns of population density in predator-prey systems under some patterns of predator
and prey dispersal. Van Kirk & Levis (1996) also showed that the scale of a dispersal kernel
relative to the size of a fragmented habitat can determine persistence of a population. These
theoretical developments are prompting ecologists to measure dispersal kernels in the field.

Here, we present a method for estimating dispersal kernels from individual mark-recapture
data. The mark-recapture data consist of information on whether or not each uniquely
marked individual was captured at each sampling occasion along with its captured loca-
tion. From the data, we derive a likelihood function, and a maximum likelihood method is
used to estimate parameters associated with the dispersal kernels.

When an individual is not recaptured, we do not know its location. One possibility is
that it was outside of the sampling area; in this case, there was zero probability of it being
captured. The other possibility is that the individual was actually within the sampling area
but was not captured by chance. To account for these two possibilities, we explicitly model
the sampling process using a function for the capture probability at a given location; we call
this function the capture probability function. The capture probability function is 0 where
sampling was not conducted, and bounded between 0 and 1 where sampling was conducted.
The capture probability function and dispersal kernel are used in integrodifference equations
to express the likelihood.

In Section 4.2 and 4.3, we describe examples of dispersal kernels and capture probability
functions, respectively. In Section 4.4, an algorithm for formulating the likelihood function
is provided. In Section 4.5, we show examples of joint probability densities of locations of
individuals at time t and their capture history sequences up to time t —1. These probability
densities are used to demonstrate how a sampling process changes the probability densities

of locations of individuals. In Section 4.6, we evaluate the performance of the estimators
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using simulated data sets. In Section 4.7, we compare some results in Section 4.6 and
equivalent results from the same data but falsely assuming that a sampling domain was
large enough to include all individuals at all sampling occasions and falsely assuming a
wrong dispersal kernel shape. In Section 4.8, we examine the performance of the method
in selecting the true dispersal kernel shape based on Akaike Information Criteria (AIC).
Up through Section 4.8, we assume individuals do not die, or that deaths occur on a much
longer time-scale than spatial movements. In Section 4.9, we discuss how we can incorporate
the deaths in a likelihood formulation when data for a longer time-scale are also available.

Other extensions of the spatial mark-recapture method are also discussed in the last section.

4.2 Dispersal Kernels

Gaussian, Laplace, and Cauchy functions are used in our analysis as dispersal kernels; these
functions are denoted by g, [, and c, respectively. These three kernels differ in kurtosis and
fatness of their tails, which are important characteristics that can determine qualitatively
different ecological dynamics (e.g. Kot et al., 1996; Neubert et al., 1995; Van Kirk & Levis,
1996). The Gaussian distribution is (by definition) nonleptokurtic and has exponentially
bounded tails. The Laplace distribution is leptokurtic and has exponentially decaying
tails. The Cauchy distribution is leptokurtic and its tails are not exponentially bounded.
Although we focus on these three distributions, the approach we outline in this paper can
be extended to many other shapes of dispersal kernels.

Let X; € R be arandom variable for the location of an individual at timet = 0,1,2,...,T
where T is the time of the last sampling. Then a kernel kq(x:41|z:) of shape d (d = g,!,¢c)
is the probability density function for X;4; conditional on X; = z;. With the further as-
sumption that the kernel depends only on the relative locations of an individual at times ¢

and t + 1, the Gaussian kernel is

- (-’Bt+1 — Tt — M)2

- , (41)

exp

1
kg(zt41 — z¢) = pore

62



where o > 0. Similarly, the Laplace kernel is

ki (T4 — @) = ‘2% exp <“Ile—'_ﬁii—&|)> (4.2)

where 8 > 0. Finally, the Cauchy kernel is

ke(zi1 — xt) = {7W [1 + (Zcﬁl_ﬂf‘t—_ﬁ> 2} }_1 , (4.3)

where 4 > 0. In the above density functions, a, B and  are parameters that define the
scale of dispersal distances (displacements), and y is a parameter that defines a directional
movement of the individual between consecutive sampling occasions (i.e. a shift in the

location of the center of a kernel).

4.3 Capture Probability Functions

The capture probability function p;(z;) gives the probability of capturing an individual
conditional on its location at time t is z;. This function depends on how sampling is
conducted. For example, the sampling may be done uniformly within a sampling area
[—d,d]. Under this sampling protocol {M7), the capture probability function is
ug for |z <d,
pi(ze) = (4.4)
0 for |z¢]>d.

In addition to the first protocol, an intense sampling area [-r,r] within the sampling
domain may be added. Under this second protocol (M3), the capture probability function
is

1 for |z <
plze) = w for r<|z| <d, (4.5)

0 for |z} >d,

with r < d.
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In the third protocol (Mj3), sampling is only done outside of the center region:

0 for |z <d,
pe(xe) = (4.6)
ug for |z¢| > d.

This type of sampling protocol is sometimes used to obtain information on the shape of tail
regions.

In the all three sampling models, u; is the parameter to be estimated. The other para-
meters (d and r) are sizes of a sampling domain and an intense sampling region, respectively.
Because they are determined before sampling, they are known constants.

Although we focus on capture probability functions (4.4)-(4.6) for simplicity, other func-
tions can be incorporated in the method outlined in this paper. In Section 4.9, we discuss

other functions that may be useful.

4.4 An Algorithm for the Likelihood

Let @ be a parameter set that defines the dispersal kernel (the scale and shift parameters)
and the capture probability function (u¢). A likelihood [;(@) associated with the zth in-
dividual in the data is a function of @ and depends on the capture history of individual
z.

Let s;(c?l +i (Tt1, Ta 41, - - -, Tty +5) be the joint probability density function for the locations
X; (t=1t1,...,t1 + j) of individual ¢ (i = 1,...,n) and for its capture history sequence up

to time t; + j. We assume that individual ¢ was first captured (i.e. marked) at time ¢; and

at location z¢,. The likelihood can then be calculated by the following algorithm:

1. Obtain the probability density function for the locations X;, and Xy, 1 of individual
%

Sg)ﬂ(xtnmtwl) = ka(ZTt;+1 — ¢, )- (4.7)

2. Obtain the joint probability density function of the locations Xy, Xy, 41, and Xy, 42
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of individual 7. If individual ¢ was captured at location z; 41 at time ¢; + 1:

53T, B0, Ty 42) = 50041 (@11, 2 41)P1 41 (T8 + Dha(@e 4z — 201). (48)

If individual ¢ was not captured at ¢; + 1:
. o0 .
Dhalas o) = [ o@D = pun(@Yhalan s =2z (49)

. Obtain the joint probability density function of the locations X3,, Xt 41, ..+, Xt 4¢41

of individual ¢. If individual 7 was captured at location x¢, 4; at time 3 +¢:

sg)+t+1(mt1,$t1+1: s 7-’Et1+t+1) = Sg)ﬁ(l’tl, ce. ,$t1+t)pt1+t(l't1+t)kd(mt1+t+1 - :vt1+t).

(4.10)

If individual ¢ was not captured at t; +¢:
. o0 .
s i1 (Tn, T4, Ty 1) = /_oo s () {1~ pr4e(2) Yha(wty 1441 — 2)dz. (411)

. Repeat step 3 until the time of the final sampling occasion T'.

. Calculate the probability density of the final observation and reinterpret it as a like-

lihood. If individual ¢ was captured at location z at time T,
2:(8) = s{(z7). (4.12)
If individual 7 was not captured at time T',

460) = [ 01— pr)dz. (4.13)

—00
0

It should be noted that equation (4.11) is a convolution of two functions and can there-
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fore be calculated quickly using a fast Fourier transform convolution method.

The above algorithm is repeated for all marked individuals. Assuming that individ-
ual movements are independent of one another, the likelihoods associated with individual
capture history sequences can be multiplied to get the likelihood of the data including all

marked individuals. This likelihood can be numerically maximized to estimate the parame-

ters.

4.5 Joint Probability Density of Location and Past Capture
History Sequence

To calculate the likelihood in the previous section, we used the joint probability density
function sgi)(xo, ..., ) of the locations of individuals from time 0 to ¢. Here, we assume
the individual was marked at time 0. In this section, we show how sgi) (zo,...,z¢) may
change with time.

As examples, we use two marked individuals released at different locations at ¢ = 0.
We simulated movements of the two individuals using the Gaussian kernel (o = 1, u = 0),
and their capture was simulated using the M; sampling protocol with probability v = 0.85
within d = [-1,1] and u = 0 outside. The marginal probability density, which does not
depend on past capture histories, can also be calculated by convolving the kernels at each
time step. We have plotted the joint probability density function s§") (zo,-..,xt) sliced
at actual capture history sequence up to time t-1 (solid lines) and a marginal probability
density function of location (dotted lines) at time ¢ = 1,2, 3 in Figure 4.1.

Figures 4.1a and 4.1d show the joint probability densities of the individuals at t = 1.
They are just Gaussian probability densities and the same as the marginal probability
densities because they do not have any previous sampling occasions.

Figures 4.1b and‘4.1e show the joint probability densities (solid lines) of the two indi-

viduals at ¢ = 2 when the individuals were not captured at ¢t = 1. Because they were not

captured at ¢ = 1, the probability that individuals were within the sampling domain at
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Figure 4.1: Joint probability density of location of an individual and its past capture history
sequence (solid line) and the marginal probability density of location of the individual
(dashed line). We simulated movements of the two individuals using the Gaussian kernel
(o = 1, = 0), and their capture was simulated using the M; sampling protocol with
probability u = 0.85 within d = [-1,1] and u = 0 outside. (a) The probability densities
at t = 1 when an individual was released at x = 0 at ¢ = 0. (b) The probability densities
at t = 2 when an individual was released at £ = 0 at ¢ = 0 but not recaptured at ¢ = 1.
(c) The probability densities at ¢ = 3 when an individual was released at z = 0 at t = 0
but not recaptured at ¢t = 1 and ¢ = 2. (d)-(f) The same as (a)-(c) except the individual is
released at = 0.5 at ¢t = 0. Vertical lines indicate the edges of the sampling domain.
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= 1 was reduced. Compared with the marginal probability densities (dotted lines), the
shape as well as the height of the joint probability densities are changed noticeably.
Figures 4.1c and 4.1f show the joint probability densities of the two individuals at ¢t = 3

when the individuals were captured at neither ¢ = 1 nor ¢t = 2. Because the individuals were

not captured in two previous sampling occasions, the degree of concavity in the middle of
the joint probability densities are magnified. Comparison between the joint and marginal
probability densities show how the shapes of the two probability densities depart from each
other because of the sampling process.

For the infinite integrals in equations (4.11) and (4.13), we truncated the kernels at
Tomin = —333 and Tmaer = 333, renormalized them so that the kernels integrate to 1, and
the equations were integrated over a domain [—1000, 1000]. This assumes that individuals
can only travel the maximum distance of 333 in one time step. This truncation has almost no
effect on the calculation because the probability of individual traveling beyond the distance
333 according to the Gaussian kernel (o = 1, u = 0) is infinitesimally small.

Comparisons of the two individuals (compare Fig 4.1b and 4.1c with Fig 4.1e and 4.1f,
respectively) demonstrate that the shape of the joint probability density function depends
on where an individual was released. For example, if an individual was released near the
edge of the sampling domain, it is more likely to leave the sampling domain than if it was
released in the middle of the sampling domain before the next sampling occasion. These
differences in probability influence the probability distribution of location of an individual
at the subsequent sampling occasions. These results show that although the movements of
the individuals are modeled with a memoryless process, the calculation of sgi)(x) depends

on the past capture history sequences. This makes further simplification of the likelihood

calculation difficult.
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4.6 Bias of Parameter Estimates

We demonstrate performance of estimators using simulated data sets. We considered 7
scenarios that differed in kernel shapes, time-dependence of capture probability, and size of
sampling domain; these scenarios are listed in Table 4.1. Under each scenario, we generated
data and estimated parameters from the data. Each data set consisted of 100 individuals
marked and released at the origin at t = 0 and resampled 4 subsequent sampling occasions
using the sampling protocol M;. This was repeated 50 times to obtain means and standard
errors of the estimates.

Scenarios 1, 2, and 3 differ in their kernel shapes; they are Gaussian, Laplace, and
Cauchy, respectively (Table 4.1). Here, we assume that movement of individuals is sym-
metric so that they are always centered at the location of the previous capture. We also
assume that capture probability is constant over time. Under these scenarios, there are
two parameters to be estimated: the scaling parameter for the kernel (a, 3, or v) and the

capture probability within the sampling domain (u).

Table 4.1: Sampling and movement scenarios used to examine parameter estimation per-
formance.

Scenario Kernel Capture Probability Sampling Domain
Scenario 1 Gaussian Constant (0.85) [-1.5,1.5]
(=0, x=10)
Scenario 2 Cauchy Constant (0.85) [-1.5,1.5]
(p=0,7v= 1'0)
Scenario 3 Laplace Constant (0.85) [-1.5,1.5]
Scenario 4 Gaussian Constant (0.85) [-1.5,1.5]
(0 =02, a=1.0)
Scenario 5 Gaussian Time Varying [-1.5,1.5)
(1=0,a=10) (0.8 05, 07 &0.9)
Scenario 6 Gaussian Constant (0.75) [-1.5,1.5]
(b=0,x=1.0)
Scenario 7 Gaussian Constant (0.85) [-1.0,1.0]
(=0, a=1.0) ’
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Under Scenario 4, the Gaussian kernel is nonsymmetric and shifted by u. This shift is
equivalent to an advection term in a simple diffusion-advection model. Under this scenario,
there are three parameters (o, u, and p) to be estimated.

Under Scenario 5, the simulated capture probability is varied at each sampling occasion.
In actual mark-recapture studies, it is very difficult to maintain a constant level of sampling
effort, and it is often even more difficult to keep the same sampling conditions over multiple
sampling occasions. Therefore, the changes in capture probability among sampling occasions
are often expected. Under this scenario, we have five parameters (a, u1, ug, ug, and uy) to
be estimated.

Scenario 6 and 7 are the same as Scenario 1, but use lower capture probability and
reduced sampling domain size, respectively.

For all kernel shapes, we truncated the kernels at z,;, = —300 and zp,.; = 333,
renormalized them so that the kernels integrate to 1, and the equations were integrated
over a domain [—1000, 1000] to calculate the infinite integrals in equations (4.11) and (4.13).
This process slightly changed the heights of the kernels and makes the shape tighter in the
middle for a kernel with fatter tails (e.g. the Cauchy kernel). We expect that fhis truncation
of kernels causes small overestimations of the scale parameter and the capture probability.

Table 4.2 shows the result comparing true and estimated parameter values. Most of the
estimates agree reasonably well with the true values. However, with such a small sample size
(50 estimates for each model), some estimates deviate from the true values. In Scenario 2,
[ is underestimated, and in Scenarios 3 and 4, v and «, respectively, are overestimated. In
part, these small deviations can be attributed to errors associated with the truncation and
the numerical integration of kernels. Furthermore, likelihood methods do not necessarily
give unbiased estimates. In the next section, we will show how these deviations change when
we make the incorrect assumptions that the sampling was done in a larger sampling domain
than the actual size and that the shape of dispersal displacements were approximated by a

Gaussian kernel when in fact come from a leptokurtic distribution.
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4.7 Bias Caused by Assuming Large Sampling Domain

When analyzing mark-recapture data, one might be tempted to assume that (1) the kernel
is approximately Normal and that (2) the sampling domain was large enough to include all
individuals at all sampling occasions. If the first assumption were true, the integrodiffer-
ence model would be a discrete-time equivalent of a simple diffusion model. If the second
assumption were true (which is rarely the case) and sampling was done uniformly over the
sampling domain, then the algorithm for calculating likelihood could be simplified because
the shape of the joint probability function in Section 4.5 would remain the same regardless
of where individuals were released and recaptured previously. When both assumptions are

true, we can obtain the value of o that maximizes the likelihood, which is expressed using

Table 4.2: Comparison between true and estimated parameter values (sample size 50).

Scenario  Parameter True Value Estimated Value (SE)

Scenario 1 o 1.00 1.005 (0.010)
u 0.85 0.850 (0.005)
Scenario 2 g 1.00 0.976 (0.015)
u 0.85 0.833 (0.007)
Scenario 3 v 1.00 1.075 (0.020)
u 0.85 0.862 (0.008)
Scenario 4 et 1.00 1.037 (0.012)
L 0.2 0.193 (0.010)
u 0.85 0.866 (0.006)
Scenario 5 o 1.00 0.993 (0.012)
w 0.80 0.794 (0.008)
us 0.50 0.505 (0.009)
us3 0.70 0.704 (0.010)
ua 0.90 0.886 (0.011)
Scenario 6 a 1.00 0.995 (0.012)
U 0.75 0.743 (0.007)
Scenario 7 a 1.000 1.001 (0.022)
U 0.85 0.843 (0.014)
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the algorithm in Section 4.4, by

4= ' %Xn: ("i) (4.14)
=1 \Yi

where n is the number of observed dispersal distances, h; is the length of the ¢th observed
interval, and v; is the time taken to travel that distance (see Appendix). The right side of
equation (4.14) is a standard deviation of the length of the observed dispersal intervals in
a unit time.

To demonstrate how falsely assuming a large sampling domain causes bias in the para-
meter estimation, we applied the equation 4.14 to the data generated under Scenarios 1, 5,
6 and 7 in the previous section.

Furthermore, when the true kernel was the Laplace or the Cauchy (Scenario 2 and 3,
respectively), we applied the algorithm presented in Section 4.4 but inappropriately assumed
a large sampling domain (d = m) to the data generated in the previous section.

In the results of these calculations, any deviations from the true vales in addition to
the deviations found in the previous section are caused by the wrong assumption on the
sampling domain size. The estimates from these calculations and the estimates in the

previous section, which set the sampling domain sizes appropriately, are compared in Table

4.3.

Table 4.3: Comparisons of scale parameters (¢, 5, or v) when appropriately setting the size
of the sampling domain and when wrongly assuming that the sampling domain was large
enough to include all individuals at all sampling occasions (sample size 50).

Scenario True Value Estimated Value (SE)  Estimated Value (SE)
using the kernel method using equation (4.14)

Scenario 1 1.00 1.005 (0.010) 0.747 (0.004)
Scenario 2 1.00 0.976 (0.015) 0.566 (0.004)
Scenario 3 1.00 1.075 (0.020) 0.428 (0.004)
Scenario 5 1.00 0.993 (0.012) 0.728 (0.005)
Scenario 6 1.00 0.995 (0.012) 0.734 (0.005)
Scenario 7 1.00 1.001 (0.022) 0.561 (0.004)
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Comparing the results under the false and correct assumptions, it is clear that if the
sampling domain was falsely assumed to be large, the scaling parameters (o, 3, and 7) are
underestimated (Table 4.3). This results from the fact that any long-distance movements
were not observed at all because they were actually outside of the sampling domain; however,
they were assumed to be always observable under the false assumption. As expected, the
bias increases as the size of the actual sampling domain is reduced from d = 1.5 in Scenario
1 to d = 1.0 in Scenario 7 because more individuals are located outside of the sampling
domain when it is smaller.

Figures 4.2a, 4.3a, and 4.4a show the kernels based on the 5th largest and the 5th
smallest of the 50 parameter values estimated in the previous section under Scenario 1, 2,
and 3, respectively, along with the true kernel that was used to generate the data. In all
three cases, the true kernel is within the upper and lower estimates. For the same scenarios,
Figures 4.2b, 4.3b, and 4.4b show the kernels based on the 5th largest and the 5th smallest
of the 50 estimated parameter values under the false assumption (large sampling domain
size). These are compared with the true kernel. For all three scenarios, the estimated
kernels are tighter than the true kernel.

These deviations from the true kernels are expected to be even more severe if the true
kernel were the Laplace or the Cauchy but was assumed to be Gaussian. This is because
more individuals are lost to unsampled tail regions when true kernels are leptokurtic, so
analyses that assume they are observable produce bigger errors. To demonstrate this, we
applied estimator (4.14) to the data generated under Scenario 2 (Laplace kernel) and under
Scenario 3 (Cauchy kernel). In doing so, we are falsely assuming that the kernel was
Gaussian as well as assuming that the sampling domain was large enough to include all
individuals at all sampling occasions. Again, we plot the kernels based on the 5th largest
and the 5th smallest parameter values along with the true kernel (Fig. 4.3¢c and 4.4c). In
both cases, under the wrong assumptions, more individuals were falsely expected to be
nearer to the center than the true distributions (Fig. 4.3c, and 4.4c).

These results suggests that it is important to record where sampling was conducted as
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Figure 4.2: Kernels based on the 5th largest and the 5th smallest of the 50 estimated
parameter values (solid lines) and the true kernel (Gaussian) used to generate the data
(solid line with triangles). (a) Parameters estimated applying Gaussian kernel and the
true sampling domain size (algorithm in Section 4.4). (b) Parameters estimated applying
Gaussian kernel but assuming the sampling domain size was large enough to include all
individuals at all sampling occasions (Equation 4.14). See the text in Section 4.6 for how

data were generated.
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Figure 4.3: Kernels based on the 5th largest and the 5th smallest of the 50 estimated pa-
rameter values (solid lines) and the true kernel (Laplace) used to generate the data (solid
line with triangles). (a) Parameters estimated applying Laplace kernel and using an appro-
priate sampling domain size (algorithm in Section 4.4). (b) Parameters estimated applying
Laplace kernel but using a larger than actual sampling domain size (d = m in the algo-
rithm in Section 4.4). (c) Parameters estimated applying Gaussian kernel and assuming the
sampling domain size was large enough to include all individuals at all sampling occasions
(4.14). See the text in Section 4.6 for how data were generated.

75




05 a
04
0.3
0.2
0.1

Oy 351 01 2 3 4

05b
0.4
0.3
0.2
0.1

%335 01 2 3 4

05
0.4}
0.3
0.2
0.1¢
4 -3-2-1 012 3 4
Displacement

Figure 4.4: Kernels based on the 5th largest and the 5th smallest of the 50 estimated para-
meter values (solid lines) and the true kernel (Cauchy) used to generate the data (solid line
with triangles). (a) Parameters estimated applying Cauchy kernel and using an appropriate
sampling domain size (algorithm in Section 4.4). (b) Parameters estimated applying Cauchy
kernel but using a larger than actual sampling domain size (d = m in the algorithm in Sec-
tion 4.4). (c) Parameters estimated applying Gaussian kernel and assuming the sampling
domain size was large enough to include all individuals at all sampling occasions (4.14). See
the text in Section 4.6 for how data were generated.
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a part of the mark-recapture data and use the kernel that best approximates the true one.

4.8 Dispersal Kernel Selection Performance

When analyzing data, we often do not know the true shape of the kernel in advance. Thus
we must fit several different kernels and try to select the one closest to the true kernel, a
challenging task. Especially when different shapes of kernels result in different population
dynamics, it is very important that we can select the best-fit kernel. Here, we evaluate
the performance of Akaike’s Information Criteria (AIC) (Akaike, 1973) as a tool for kernel
selection.

We generated a data set using each of the three dispersal kernels, fitted the three disper-
sal kernels to the data set, and selected the best-fit kernel according to AIC. Each data set
consisted of 100 individuals released at the origin at ¢ = 0 and resampled at 3 subsequent
occasions. This was repeated 20 times to obtain the probability of selecting the true model.
The same process was repeated with different sampling domains (d) under the sampling
protocol Mj. For each true kernel, we set the scaling parameter (o, 3, or ) equal to V2
and set the capture probability (u) to 0.85 within the sampling domain.

Figures 4.5, 4.6, and 4.7 show changes in the probability of selecting the true kernel
shape with the size of sampling domain when the true kernel was Gaussian, Laplace, and
Cauchy, respectively.

Associated error bars show the point-wise estimates of 95% confidence intervals. In each
figure, we also show the size of the sampling domain that contains 50% of individuals at
time ¢ = 1 (left line) and at time ¢ = 3 (right line). We call the two points reference points
and compare the probabilities for the three kernels at these points.

As expected, the probability of selecting the true kernel shape increases as the sampling
domain increases in all three cases. Comparisons among the three kernels reveal that when
the true kernel was Cauchy, there is a high probability of selecting the true kernel even

when the sampling domain is small (Figure 4.7). When the true kernel was Gaussian, the
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Figure 4.5: The probability of selecting the true kernel shape when the true kernel shape
was Gaussian as the sampling domain is changed. Error bars indicate estimated point-wise
95% confidence intervals. Vertical lines on the left and right indicate the size of sampling
domain where 50% of individuals are expected to be within the sampling domain at t =1

and t = 3, respectively.
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Figure 4.6: The probability of selecting the true kernel shape when the true kernel shape
was Laplace as the sampling domain is changed. Error bars indicate estimated point-wise
95% confidence intervals. Vertical lines on the left and right indicate the size of sampling
domain where 50% of individuals are expected to be within the sampling domain at ¢ =1
and t = 3, respectively.
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Figure 4.7: The probability of selecting the true kernel shape when the true kernel shape
was Cauchy as the sampling domain is changed. Error bars indicate estimated point-wise
95% confidence intervals. Vertical lines on the left and right indicate the size of sampling
domain where 50% of individuals are expected to be within the sampling domain at t =1
and t = 3, respectively.

probability of selecting the true kernel is also relatively high at the two reference points.
The probability of selecting the true kernel when it was actually Gaussian, declines rapidly
to the left of the smaller reference point. We speculate that this rapid decline is due to the
nonleptokurtic nature of the distribution. The middle part of the kernel tends to be flat
and it may not contain much information about the shape of the kernel. When the true
kernel was Laplace function, the probability of selecting the true kernel is the lowest (Figure
4.7). This result is consistent with the fact that the shape of the Laplace distribution is
intermediate between Gaussian and Cauchy distributions in terms of their kurtosis.

When the true kernel was Cauchy and the true kernel was not selected, wrongly selected
kernels tended to be Laplace kernel. Similarly, when the true kernel was Gaussian, wrongly
selected kernel tended to be Laplace. However, when the true kernel was Laplace, both
Cauchy and Gaussian kernels were selected wrongly. This result also suggests that select-

ing between Laplace and Cauchy or between Laplace and Gaussian is more difficult than

selecting between Cauchy and Gaussian. If such model selection is important, one should
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consider ways to improve the model selection performance. Two obvious ways to improve
the performance are to increase sampling domain size and number of marked individuals.

Alternatively, we can fix the size of sampling domain and add small area of the intensive
sampling within the domain to try to improve chances of selecting right kernel. We examined
how the probability of selecting the true kernel changes as the size of intense sampling region
is changed in M> sampling protocol (Fig. 4.8). We used the same Gaussian kernel as before
(a = v/2 and p = 0) and the sampling domain d = 0.75. Without the intense sampling
domain, there is only 0.45 probability of selecting the true kernel. However, adding a small
intense sampling region 7 = 0.1 in Equation (eq:intense) increases this probability to 0.8.
This suggests that intense sampling over a small part of the domain provides an alternative
way of improving the model selection performance instead of simply increasing the sampling
domain size or increasing the number of marked individuals.

Finally, we examined the performance of selecting the true kernel under the sampling
protocol M3, in which only outer region is sampled. This protocol may be used when trying

to collect information on the shape of the tail regions of kernels. Under this protocol, there
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Figure 4.8: The probability of selecting the true kernel shape when the true kernel shape
was Gaussian as the region of intense sampling was increased under sampling protocol Ma.
Error bars indicate estimated point-wise 95% confidence intervals.
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was high probability of selecting the true kernel. However, when the sampling region was
reduced by increasing d in equation 4.6, very small number of individuals were recaptured.
This was especially true when the kernel was Gaussian. As a result, it was very difficult
for likelihood to converge in the numerical optimization even when applying the true kernel
shape. This suggests that although the important part of the kernel in terms of ecological
dynamics may be the distribution in the tail regions, it is also necessary to sample the

center region to estimate kernels.

4.9 Extension of the Method

We have considered estimation and performance of selecting kernel shapes under different
sampling protocols; however, the method is flexible enough to be used in other circum-

stances. Here, we discuss possible extensions of the method.

4.9.1 Kernel Shape

We used three kernel shapes (Gaussian, Laplace, and Cauchy) in this paper because of
differences in their kurtosis. Other kernel shapes can be incorporated in the method, but
there are exceptions. For example, a rectangular kernel cannot be incorporated in the
method. The parameters in the rectangular kernel define the height of the kernel and
the parameters of the capture probability function also define the height of the function.
As a result, the parameters in the rectangular kernel and capture probability function
become confounded. It should also be noted that the individual mark-recapture method
permits estimation of scale parameters (o, 3, and ) and a shift parameter (1), however,
a shape parameter such as the one in the standard Student’s ¢ distribution appears to be
unestimable. The estimated parameters, therefore, are conditional on the shape of kernel,
and the model selection approach to select the best-fit kernel as presented in Section 4.8
becomes important.

In this paper, data in a one-dimensional space were considered. However, it is simple to
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extend the method to data in a two-dimensional space. One way of doing so is to collapse
a two-dimensional into a one-dimensional problem using a polar coordinate if the kernels
are symmetric about their centers (see Shigesada & Kawasaki, 1997, for this approach in a
simple diffusion model). Alternatively, we can fit two-dimensional kernels such as bivariate

Gaussian and bivariate Cauchy distributions directly to the data.

4.9.2 Mortality

The method presented here assumes that there were very few deaths of marked individu-
als within the entire sampling period (¢ = 0,...,T"). This assumption is needed because
deaths would add another reason for not capturing individuals. When there is mortality,
survival probability will be multiplied to the dispersal kernel. The product is the kernel
with a reduced height. A kernel with a similar height can also be produced by letting
more individuals to travel outside of sampled region. As a result, kernel parameters become
confounded with survival probability. The same problem is encountered in the discrete
multi-stage mark-recapture method, in which individuals temporarily emigrate out of sam-
pled region (Kendall et al., 1997; Kendall, 1999, Chapter 3). In the discrete case, some
transition probability parameters are also confounded (see Chapter 3).

Under certain circumstances, however, parameters associated with survival probability
can be estimated along with the dispersal kernel and capture probability. One such example
is when the dispersal kernel has finite support and the sampling is conducted over the entire
region within which individuals move. Then there is no temporary emigration, and survival
probability can be estimated in addition to the parameters associated with the kernel. In
this case, survival probability is given by the area under the kernel.

Alternatively one can collect data on two different time-scales (one on the scale of
movement, and the other on the scale of the mortality process) to estimate parameters
associated with both kernel and survival probability. Movement on the faster-time scale
can be modeled assuming no mortality. The data on the slower time-scale can be modeled

with dispersal kernel, survival probability, and capture probability. A single likelihood
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associated with both sets of data can be used to estimate all the parameters. This method
is similar to Pollock’s robust design method (Pollock, 1982) in which no mortality was

assumed in a short-time scale to estimate capture probability.

4.9.3 Sampling Design

In this paper, we considered only three different types of sampling protocols. However,
there are many other possibilities. In Section 4.8, we demonstrated that even with a small
sampling domain relative to the shape of the kernel, adding a small intense sampling region
within the sampling domain (sampling protocol M>) can improve model selection perfor-
mance. For the protocol we considered , we added the intense sampling region in the
middle of the sampling domain. However, the intense sampling region can be moved to
other locations within the sampling domain. It is also possible to sample at many isolated
small regions intensively or also possible to sample only toward the left (or right) half of
the space. How the sampling effort should be allocated is an important question to ask
before actual sampling and will likely vary from study to study. To answer such a question,
different movement and sampling scenarios can be explored using simulated data sets as we
demonstrated in this paper.

In actual sampling, it may not be possible to maintain a constant capture probability
over the whole sampling domain. For example, vegetation coverage or topography of the
ground may influence capturability of individuals. However, when such data as degree of
vegetation coverage or index of topographic feature are available, they can be incorporated
into the capture probability function as covariates using a function such as the logistic
function

exp (¥ + we(zt))

pe(e) = 1+ exp (¢ + we(zy)) (4.15)

where 1 and w are the intercept and slope parameters and c(x¢) is the value of covariate at
location z at time ¢. This ability to model the capture probability function is one strength

of the individual mark-recapture method presented in this paper.
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4.10 Discussion

The individual mark-recapture method presented here permits estimation of parameters
associated with non-Gaussian as well as Gaussian kernels from individual mark-recapture
data that are sampled in a finite sampling domain. We analyzed the performance of esti-
mators and the model selection method using simulated data sets. Each data set consisted
of only 100 marked individuals, but both the parameter estimators and the model selection
worked reasonably well.

The method presented in this paper can be considered as a continuous-stage equivalent to
a multi-stage (or multi-type) mark-recapture method (e.g. Nichols et al., 1992b, also Chapter
2). In the method presented in this paper, “stage” corresponds to the spatial location of
the individual. There are several studies that attempt to quantify movements of individuals
using a discrete-stage multi-stage mark-recapture method (e.g. Arnason, 1973; Hilborn,
1990; Hestbeck et al., 1991; Brownie et al., 1993). However, the discrete-space approach
loses the detailed information on where individuals were located within the discrete patches.
As shown in Section 4.5, it is very important information when estimating dispersal kernels
accurately.

Other types of data are also collected to quantify movements of organisms. For example
“seed shadow” data contain locations of seeds released from a single plant. From these data,
non-Normal dispersal kernels (e.g. Werner, 1975; Carey & Watkinson, 1993) or invasion
speed of the population (Clark et al., 2001a) can be estimated. The data are excellent when
organisms have both dispersal and sessile stages and the source of seeds can be identified.
Another type of data is mass mark-recapture data in which markings are not unique to
each individual (e.g. Dobzhnsky & Wright, 1943; Taylor, 1978; Kareiva, 1983; Turchin &
Thoeny, 1993). These data contain locations of captured individuals, but do not contain
information on which individuals were captured. This type of data is excellent when large
number of individuals can be marked and sampling process can be controlled to be constant

over space and time. The individual mark-recapture method presented in this paper is an
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addition to these existing ways for estimating dispersal kernel. We expect this method to be
particularly useful to estimate kernels associated with animals that can potentially travel a

long distance when only small numbers of them can be marked.
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4.11 Appendix

We derive equation (4.14) from the likelihood function in Section 4.4. Here, we are assuming
that movement is modeled with the Gaussian kernel without any shift (x = 0), capture
probability is constant in time and space, and sampling is done over the entire universe.

First, we divide the capture history into segments when the individual was recaptured,
and note that the probability density for the capture history sequence is a product of the
probability densities for the segments. For example, suppose that an individual was marked
and released at z; at time 1, recaptured the first time at z3 at time 3, but never recaptured
again when the sampling ended at time 5. This capture history is separated into two
segments: one from time 1 to 3 and the other from time 3 to 5. The probability density for
the second segment is conditional on the release at z3 at time 3. Consequently, the product
of the probability density for the first and second segments gives the probability density of
the entire capture history sequence.

After separating the capture history sequences of individuals into segments, we classify
the segments into two forms. In one form, individuals are released at z; at time ¢t and
recaptured at iy, at time t + v (v = 1,2,...) the first time since ¢, and in the other
form, individuals are released at z; at time ¢ but never recaptured again. With these two
forms, we can construct any capture history sequences. We derive general expressions for
the probability density of these two types of the segments.

For the jth segment of the first form, we write down the probability density function
for the location X34, = y of an individual in which it was released at z; at time ¢. If the
individual was recaptured immediately after the release (v = 1),

sg-)l(y) = key(y—z)p
(4.16)
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where

202

2
ko(y — 4) = O“}Q_W exp {_—(-y——"—ﬂ} : (4.17)

Similarly, if the individual was recaptured the first time at t +2 (v = 2),

Phw) = [ kolz= 201~ p)ko(y — 2lpdz

= (1- p)p/_o:o ko(z — zt)kg(y — 2)dz. (4.18)

(4.19)
If the individual was recaptured the first time at t + 3 (v = 3),

shw) = [ ‘: [ ol = 200 = Pyl = 2)d(1 = By — wpcw

- (1-p)?p /_ Z [ °:o ko2 — 2o (w — 2)dzky(y — w)dw. (4.20)

By inspection of the above equations, we obtain the general probability density function

associated with the first form of the capture history segments as

s, = (1= p)*pfuly, z0), (4.21)

where f,(y,z;) is the probability density function obtained by convolving the Gaussian
kernel, which is centered at xz;, with v — 1 Gaussian kernels, which are centered at the
origin, sequentially. By convolving two Gaussian kernels, we get the Gaussian kernel with
its variance being the sum of the variances of the two convolved Gaussian kernels. Therefore,

equation (4.21) becomes

] v— 1 —(y —x1)?
e e (@22

Similarly for the second form of the capture history sequence, which ends without ob-

serving the individual, we write down the probability of not recapturing the individual ¢
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that was released at z; at time ¢:

. oo

P 0n [Caeem e T

s = (1-p)? ~ —t=

9 = ) fa(z,ze)dz for T—t=2, (4.24)

o = @-pP [ pmads for T-t=3 (4.25)
—00

where T is the time of the last sampling occasion. The integrals in equations (4.23)-(4.25)
are 1 because integrands are probability density functions. Thus, we obtain the general

equation for the probability as
s =(1-pT. (4.26)

The likelihood in Section 4.4 (Equations 4.12 and 4.13) can be expressed as a product of
equations (4.22) and (4.26). In both equations(4.22) and (4.26), the capture probability (p)
can be factored from the dispersal kernels because the capture probability is independent
of location. Therefore, the likelihood can be expressed by a product of two terms each con-
sisting of only dispersal kernel or only capture probability. Consequently, we can maximize
the terms for capture probability and dispersal kernel the likelihood separately to find the
maximum likelihood estimates of the parameters. In other words, capture probability does
not affect the parameters associated with kernels in the estimation. Since we are only in-
terested in estimating the parameter associated with the dispersal kernel, we can ignore the
capture probability part. Furthermore, equation (4.26) contains only the capture probabil-
ities. Thus the part of the likelihood that we are interested is just a product of equations
(4.22) each expressed for observed dispersal intervals. We denote this special likelihood as

£sp. After collecting terms in £s,, we obtain

1 —1 X R
Ly = exp | — > 2|, (4.27)
7 @) [Sa sz]
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where n is the number of observed dispersal intervals, h; is the length of the jth observed
interval, and v; is the time taken to travel that distance.
Taking the derivative of equation (4.27) with respect to the parameter o, setting the

derivative equal to zero, and solving for « results in equation (4.14).
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Chapter 5

Demography of the endangered
North Atlantic right whale

Fujiwara, M. and Caswell, H. (2001)! Demography of the endangered North Atlantic right

whale. Nature 414(29): 537-541.

1Reprinted with permission of Nature Publishing Group. Any right to copy and/or distribute this chapter
when not incorporated in this thesis shall require further permission of Nature Publishing Group.
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Northern right whales (Eubalaena glacialis) were formerly abun-
dant in the northwestern Atlantic, but by 1900 they had been
hunted to near extinction. After the end of commercial whaling
the population was thought to be recovering slowly; however,
evidence indicates that it has been declining since about 1990
(ref. 1). There are now fewer than 300 individuals, and the species
may already be functionally extinct™ owing to demographic
stochasticity or the difficulty of females locating mates in the
vast Atlantic Ocean {Allee effect®). Using a data set containing over
10,000 sightings of photographically identified individuals we
estimated trends in right whale demographic parameters since
1980. Here we construct, using these estimates, matrix population
models allowing us to analyse the causes of right whale imperil-
ment. Mortality has increased, especially among mother whales,
causing declines in population growth rate, life expectancy and
the mean lifetime number of reproductive events between the
period 1980-1995. Increased mortality of mother whales can
explain the declining population size, suggesting that the popula-
tion is not doomed to extinction as a result of the Allee effect. An
analysis of extinction time shows that demographic stochasticity
has only a small effect, but preventing the deaths of enly two
female right whales per year would increase the population
growth rate to replacement level.

Conservation biology uses population models to assess popula-
tion performance, to diagnose the causes of poor performance, to
prescribe management interventions, and to make prognoses of

© population viability (see chapter 18 of ref. 5). We have developed a

stage-structured matrix population model*~” that addresses all four
of these tasks. This matrix model uses the life cycle shown in Fig. 1 (a
similar model has been successfully applied to a killer whale

Fgure 1 Life cycle graphs of female (a) and male fb) right whales. Numbers represent
different stages: 1, calf; 2, immature female; 3, mature female; 4, mature females with
newborn calves (mothers); 5, dead; 6. immature male; 7, mature male. Each arrow
represents a possible transition in stage from one year to the next; the arrows going to
stage 5 represent stage-specific mortalities. A calt is an individual that was sighted along
with its mother. An immature is an individual known to be less than 9 years ofd. Mature
individuals are knovm to be at least 9 years old, or in the case of temales, have been
sighted previously with a calf. Mothers are females that are sighted with a newborn
offspring. If the sex of an individua! is unknown, we assume it has an equal chance of
being either female or male, as our data contain almost equal numbers of individuals (141
and 143) knovin to be female and male, respectively. Maturity status (whether an
individual is immature or mature) is unknown in 22% of sightings. When maturity status
was unknown, we estimated the probability that the individual was immature (0.30 for
males, 0.87 for females) using the method described in ref. 10. These probabitities were
used in stage-assignment matrices' for likelihood calcutations
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population®). The parameters in the matrix model were defined
by a series of statistical models, the parameters of which were
estimated by applying stage-structured mark-recapture analysis®>!
to photographic identification data collected by the New England
Aquarium (NEA)". The best model was selected using Akaike
Information Criteria (AIC)}?*™" (see Methods).

Sighting probabiity

Sighting probability
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Figure 2 Stage-specific sighting and survival probabilities for males ang females.

a, b, Stage-specific sighting probabilities of the best model (M;) for females (a) and males
(b). ¢, d, Stage-specific survival probabilities (A4;) for females (¢} and males (d). Squares,
calf, triangles, immalure; circles, mature; diamonds, mothers.
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Figure 3 Constant transition probabilities estimated using the best sighting model (M).
Life cycle graphs of female (a) and male (b) right whales. The numbers in the circles are
the same as in Fig. 1.

In the resulting model, the sighting probability of most stages
depends on both northern and southern effort levels (Fig. 2a, b; see
Methods for definition). This is consistent with a previous study',
which found a significant correlation between total effort and
sighting probability in a simpler model that did not distinguish
sex or stages. In contrast to other stages, mothers have a consistently
high sighting probability (Fig. 2a). This suggests that they arc easier
to sight than other stages, and that the survey effort in the two
' regions has been sufficient to detect almost all births with high
probability.

Using the best sighting probability model, we estimated two
transition models. One model assumed time-invariant transition
probabilities (M,) and the other was the best time-varying model
according to the AIC criterion (M,). The time-invariant model (M,,
b = 0forall jand i in equation (2)) gives a weighted, time-averaged
picture of transition probabilities. In this model, survival prob-
ability is low for calves, higher for immature and mature females
and much lower for mothers (Fig: 3). According to the best time-
varying model (M,), the transition probabilities of mature females
and males have been constant, whereas the other stages have
transition probabilities that change with time. The survival prob-
ability of mothers shows the most pronounced decline over time
(Fig. 2c, d). This trend is statistically significant, as the slope
parameter (by,) in the polychotomous logistic function (equation
(2)) is significantly below 0 (Fig. 4).

A series of population projection matrices, A, was constructed by
augmenting the female transition probability matrix with elements
describing reproduction'” (see Methods). These matrices were used
to calculate population growth rate, life expectancy and expected
lifetime number of reproductive events experienced by a female.

The asymptotic population growth rate () is given by the
dominant eigenvalue of the population projection matrix. When
A > 1, the population is asymptotically growing; when A <1, the
population is asymptotically declining. Therefore, A is an important
indicator of the status of a population. If we assume all demographic
parameters have been constant from 1980 to 1995 (M, ), we find that
X = 1.01 (95% confidence interval = [1.00, 1.02); the confidence
interval was estimated using the estimated covariance of parameters
by taking the inverse of the Hessian matrix™), suggesting a popula-
tion increase of 1% per year, on average, between 1980 and 1995.
However, time-specific asymptotic growth rates (A,)—calculated
from the time-varying matrices A, using model M;—declined from
Aigo = 1.03 10 Ay = 0.98 (Fig. 5¢). Population growth rate
declined below 1 at around 1992. If the 1995 population growth
rate were maintained, the population would go extinct.

Thedeclinein A, is the net result of all the changes in the vital rates
(a collective term for transition, survival, fertility and mortality
rates). We determined how much the decline in each vital rate
contributed to the decline in A, using a life table response experi-
ment (LTRE) analysis**. This analysis decomposes the changes in A,
into contributions from each entry in A, Figure 5d shows the sum of
the contributions of all matrix entries involving each stage. The
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Figure 4 Joint 95% profile likelihood confidence region for the logistic parameters of
survival probability of mothers.

results of this analysis show that the decline in }, is caused mainly by
the decline in the survival probability of mothers (Fig. 5d).

The life expectancy at birth is the mean age at which individuals
born in a given year would die if conditions of that year were
maintained. It can be calculated by treating the transition matrix as
an absorbing Markov chain and calculating the mean time to
absorption (that is, death)’. During the early 1980s, the life
expectancy of females was twice that of males (Fig. 5a). This may
be typical of large cetaceans. (Killer whales (Orcinus orca), for
example, exhibit a similar difference in life expectancy between
females and males'.) Female life expectancy has declined from
about 51.8 years in 1980 to about 14.5 years in 1995. Until recently,
life expectancy of females has exceeded that of males, but that is no
longer true owing to the reduced survival probability of females.

The expected number of reproductive events during a female’s
lifetime® has declined from about 5.27 in 1980 to about 1.26 in 1995
(Fig. 5b). A mature female could once expect to reproduce 6.48
times; that number is now about 1.80.

The growth rate projections in Fig. 5c are deterministic. The right
whale population is small, however, and the population of any single
stage is even smaller. Because of this, it has been suggested that
population projections should include demographic stochasticity
(chance fluctuations due to the random fates of a small number of
individuals; see ref. 5). To evaluate the effect of demographic
stochasticity, we transformed the matrix A into a multitype
branching process®, and calculated the probability distribution of
times to extinction (Fig. 6). We compared this distribution with the
deterministic prediction obtained by using Ay and defining
extinction as the time when total population size reached I
individual. For both calculations, we used an initial condition of
150 females distributed according to the stable stage distribution.
This simulates the hypothetical situation in which the vital rates of
1995 remain constant and neither environmental trends nor envir-
onmental fluctuations affect them.

The mean time to extinction under demographic stochasticity is
208 years (similar to the estimate of 191 years in ref. 1). The
deterministic lime to extinction is 245 years. Thus demographic
stochasticity reduces expected extinction time by 15%. Figure 6
gives the complete distribution of extinction times; there is a 5%
chance of extinction within 130 years and a 25% chance of extinc-
tion within 165 years. These calculations exclude other factors such
as continued declining survival trends, environmental stochasticity
and Allee effects, all of which would hasten extinction. Thus the
expected time of 208 years should be considered an upper bound.

Right whale conservation efforts are directed towards reducing
mortality due to entanglement and ship collisions. Because the
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Figure 5 Demographic parameters cafculated from the time-varying matrices A, a. The
mean life expectancy at bidh for males {triangles) and females (circles). b, The mean
number of lifetime reproductive episodes, estimated from birth (circles) and from maturity
{triangles). ¢, Asymptotic population growth rates A, (sofid line) calculated from the
poputation projection matrices 4, produced by the best madel (M) and from the
unstructured model of ref. 1 {dotted line). The error bars were standard errors, which were
calculated using the series approximation to the variance of A and the covariance matrix
obtained from the information matrix. d, The result of a LTRE decomposition analysis for
the trend in .. The demographic rates in 1980 are used as the reference matrix, and the
contributions of all matrix entries involving each stage were summed. The solid line shows
the actual trend in X, measured as a deviation from the vake in 1980. It is closely
approximated by the sum of all the other lines. Squares, calf; triangles, immature; circles,
mature; diamonds, mothers.
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Figure 6 The probability distribution of time to extinction assuming demographic
stochasticity. The distribution was calcufated from a multi-type branching process,
treating transitions and reproduction as independent events {multinomial and Bernoulli,
respectively; see ref. 5).

population is so small, a single death represents a significant
mortality rate. Conversely, significant reduction in mortality rate :
can be obtained by preventing just a few deaths. Figure 7 shows the
effect on X of preventing female deaths, using the vital rates of 1995
and assuming a starting population of 150 females distributed
according to the stable stage distribution. The results indicate that
prevention of just two female deaths every year would suffice to
increase A to 1. This gives a sense of the magnitude of the initial
management action needed for the protection of the population.
However, as population size increases owing to successful manage-
ment, more deaths will have to be prevented to maintain a positive
population growth rate because the number of deaths that translates
into a given mortality rate also increases with the population size.

The causes behind the decline in survival probability of mothers
are still unknown; however, collisions with ships, entanglement with
fishing gear and changes in food availability due to climate fluctua-
tions are suspected to contribute towards mortality'*"”. Although
right whales are distributed from the coast of northern Florida to
the Bay of Fundy, it is primarily females and calves that are sighted
in the calving ground off the coast of Florida and Georgia'. The
calving ground is close to shipping lanes where large vessel traffic
has increased since 1980 (ref. 19). More than 60% of North Atlantic *
right whales have scars from entanglement in fishing gear such as
lobster pots and sink gillnets'”. We have found a significant rank
correlation between crude survival probability’ (the survival prob-
ability of individuals without distinguishing stage differences) and
North Atlantic Oscillation index (NAO), which is often used as an
index for climate fluctuations™. Studies that focus on the effects of
these three factors are urgently needed.

This study combines multi-stage mark-recapture methods and
matrix population model analyses. Both methods incorporate
differences in vital rates that are experienced by different stages
within a population. Multi-stage mark-recapture analysis also
incorporates stage-specific heterogeneity in sighting probability !
within the population. We succeeded in identifying a life cycle
stage that is experiencing reduced survival probability, and were
able to use the model to document the implications of that reduced
survival probability for population growth.

Like any mark-recapture analysis, ours can be influenced by
heterogeneity in sighting probability among individuals within a
stage. If the sighting probability of mature females (stage 3) was
heterogeneous, the survival probability of mothers towards the end
of the study period would be underestimated. However, hetero-
geneity in sampling alone cannot explain the observed decline in the
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survival probability. Furthermore, during the winter of 1996, an
unusually large number of confirmed mortalities were reported in
the southeast United States, which is the only known calving
ground"”. This evidence suggests that the declining trend in the
. survival of mothers is both real and a great concern.

The North Atlantic right whale is currently seriously endangered
owing to declining survival probability, especially among mothers.
This finding, together with the unprecedented calf production in
the spring of 2001 (ref. 21), suggests that Allee effects are not yet
limiting this population. Our analysis also shows that the popula-
tion was experiencing 2 positive growth rate in the carly 1980s
(Fig. 5¢). This implies that it is not necessary to return the vital rates
to those of the pre-whaling period to obtain a positive growth rate.
There is every reason to hope that prompt management interven-
tion can improve survival enough to permit the recovery of the
North Atlantic right whale.

Methods

Photographic identification data

Since 1980, the NEA has accumulated photographs of approximately 350 right whales
taken on morc than 10,000 sighting occasions. Individual right whales can be recognized
by natural markings such as scars and callosity patterns, On the basis of these
identifications the NEA has ted a database of individual sighting hi which
consist of information on whether or not each individual was sighted at least once in cach
yoar. These data can be treated as if individuals were marked on the occasion of their first
identifications, and recaptured at subseq: ightings. We used the data from 1980 10
1996, which were completc at the beginning of this analysis.

Statistical models
Sighting probabilities of each stage and transition probabilities among stages were

where a, and b, are intercept and slope parameters, respectively. When all the slope
parameters are set to zero, the transition probabilities arc time-invariant.

Mode] selection

Model selection was done in the following sequence. First, 1.024 sighting models were
created by including all possible combinations of effort levels for all possible combinations
of stages (cquation (1)). These models were combined with the transition model in
equation (2) in which all probabilities arc functions of time. We selected the best of these
models using AICY. The AIC difference between the best and the second-best sighting
models was about 2, indicating that the support for the hest model relative to the second
best model is high'*. Therefore, we used only the best model. Because sighting probabilities
of immature males and females did not differ significantly, by a likclihood ratio test, they
were set equal. Using the resulting model for sighting, we selected the best time-varying
transition matrix from all 64 models created by allowing the transition probabilitics of alt
possible combination of stages to depend on time according to equation (2). The four best
transition models had AIC differences from the best model of less than 2, indicating that
the data provide some support for all these models. All of these models, however, had
time-dependent survival probability of muthers.

Projection matrix
The projection matrix is
] F, F, 0
| patn putn 0 0 ®
) 0 pult) pult) puln)
[i] puit) puty 0
where
ey = 0.5 (NPUlT+ 1) ) -
and
E. = 05p(npdlit + 1) (s)

The first row of A, describes reproduction; the other entries are transition probabilities.
Consider F:. When a female moves from stage 2 to stage 4 (with probability p,(1). she
gives birth; the newborn calf is female with probability 0.5. Although newborn calves have
distinct markings, they are harder 10 distinguish individually than other stages. There-
fure, calf survival is estimated from the point where the calf is seen sufficiently well to
permit identification, which is not necessarily on its first sighting. To appear as a calf in
stage 1212 + 1, the newborn calf must survive long enough to be catalogued. We assume i
calves ase catalogued on average midway through their first year, and that the mother
must survive this long (with probability p3i'(r + 1)) in order for the calf to survive. Ky is
similar.
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Chapter 6

Stage-structured demographic
analysis of North Atlantic right
whale: Effects of environmental
and demographic stochasticity on
population viability

6.1 Introduction

North Atlantic right whales (Eubalaena glacialis) are one of the most endangered mammal
populations in the world. By the beginning of the 20th century, the population in the
western Atlantic had been hunted to near extinction. Despite more than a half century of
international protection, no clear sign of their recovery has been detected. This population
currently consists of fewer than 300 individuals, and there is evidence to suggest that this
number is slowly shrinking because of declining survival probability (Caswell et al., 1999,
also Chapter 5). A previous study (Chapter 5) has shown that this reduction in survival is
primarily a result of an increase in the mortality of females during the year after giving birth.
The same study has also concluded that if the environmental conditions experienced by this
population in 1995 were maintained in future years, the population would be expected to go
extinct in about 200 years. The survival of this population depends on prompt and effective

conservation efforts based on our understanding of the population.
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Results of any demographic analysis has inherent uncertainties because a population
is affected by many factors; the North Atlantic right whales are not an exception. For
example, demographic stochasticity can reduce the time to extinction (Caswell, 2001). The
results in Chapter 5 and Pershing & Greene (2002) showed that the estimated survival
probability and reproductive rate, respectively, are significantly correlated with an index
for climate pattern in the North Atlantic (the North Atlantic Oscillation index), suggesting
that the environmental forcing is also affecting the population. In this paper, we present
the results of a demographic analysis of the North Atlantic right whale that analyzes effects
of demographic stochasticity and environmental stochasticity on population viability.

Another uncertainty inherent in demographic analyses are the uncertainties in parameter
estimation and model selection. In this paper, we will assess the parameter estimation
uncertainty using a parametric bootstrap method. We also apply the Akaike Information
Criteria (AIC) to select the best-fit models from multiple candidate models. This method

takes into account model selection uncertainty.

6.2 Method

6.2.1 Matrix Population Model for the North Atlantic right whales

Our analysis uses a stage-structured matrix population model (e.g. Caswell, 2001). This
model takes into account the differences in vital rates among life stages. The model in a

general form is expressed as

n(t+1) = AOn(t) (6.1)

where n(t) is a vector containing the number of individuals at year ¢, and A® is a matrix
that projects the number of individuals in each stage from year ¢ to ¢ + 1. The entries in
A®) are determined by a life cycle structure of a population of interest.

For the North Atlantic right whales, we developed a life cycle structure based on available
information on their life history Figure 6.1. In the figure, the numbers indicate stages, solid

arrows indicate possible transitions that an individual can make from one year to the next
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Figure 6.1: Life cycle graph of the North Atlantic right whales: 1: calves, 2: immature
females, 3: mature females, 4: mothers, 5: mature females during a year after the mother

stage

if it survives, and the dashed arrow represents reproduction of offspring by mature females
(i.e. fertility). Each of the solid arrows has an associated transition probability ¢g-), which
gives the probability that an individual in stage j in year ¢ is in stage ¢ in the following
year. This stage structure is slightly different from the one in Chapter 5. In the new stage
structure, females have an extra stage after giving birth (stage 5) during which they cannot
reproduce again. This reflects the fact that individual right whales rarely give birth within
two years after a successful reproduction.

Based on the stage structure in Figure 6.1, we wrote down a projection matrix for the

North Atlantic right whales:

[0 o FY o o
buly) ¢ 0 0 0
A= 0 42 4} o 4| (6.2)

0 0 ¢ 0 o0
o o o ¢ o

The first row of A(®) describes reproduction; the other entries are the transition probabilities.
Here, we assume that population dynamics are determined only by female vital rates and

there are always enough males to fertilize them. Therefore, we only keep track of number

of females.
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Because of the way the stage structure is defined, the fertility Fét) can be expressed in

terms of transition probabilities as
0.5
HO = 0] (d)"° o3

This relationship is based on the following arguments. When a female moves from stage 3
to stage 4 (with probability qﬁfg), she gives birth; the calf is female with probability 0.5.
Although calves have distinct markings, they are more difficult to distinguish individually
than other stages. Therefore, calf survival is estimated from the point where the calf is seen
sufficiently well to permit identification, which is not necessarily on its first sighting. To
appear as a calf in stage 1 in year ¢ + 1, the newborn calf must survive long enough to be
cataloged. We assume calves are cataloged on average midway through their first year, and
that the survival probability is equal to that of mother during the same period (with prob-
ability (¢§2+1))0_5)' Ordinarily, when estimating a population projection matrix, transition
probabilities and fertility terms must be estimated separately, often requiring different sets
of data. Because we can express the fertility term with the transition probabilities, we only

need data to estimate the transition probabilities.

6.2.2 Data

The data we used to estimate transition probabilities are individual sighting histories of
the right whales. They are based on photographs taken by members of the North Atlantic
right whale consortium along the east coast of the United States from 1980 to 1998. Major
survey areas include Massachusetts Bay, Great South Channel, Bay of Fundy, Brown’s Bank,
and off the coast of Florida and Georgia. Because right whales have unique markings called
callosity patterns on their head and scars from entanglement in fishing gear, individuals can
be identified from the photographs. Based on these photographs, New England Aquarium
has been accumulating annual sighting histories of individual right whales. For the purpose

of our analysis, individuals were considered captured and marked at the occasion of their
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first sighting and recaptured when they were resighted at least once in a later year.

Of the 406 individuals captured between 1980 and 1998, 158 were identified as female
and 163 were identified as male. The rest were assumed to be female or male with an equal
probability. At each sighting occasion, we also categorized the sighted individual into one
of the five life stages (calf, immature, mature, mother, and mature female during a year
after the mother stage) based on the following criteria. Calves were sighted along with their
mothers. Immature individuals were known to be less than 9 years old. Mature individuals
were known to be at least 9 years old, or in the case of females, had been sighted previously
with a calf. A “mother” is a female during the year after a successful birth. A stage for
mature female during a year after the mother is for a female that is known to have given
a birth in a previous year. After assigning the stages based on these criteria, we were left
with about 30% of the total sightings that belong to either immature or mature stages but
did not have enough information to assign either stage with certainty. We assumed that

they have an equal chance of being immature or mature.

6.2.3 Maulti-stage mark-recapture statistics

We estimate the transition probabilities ¢g) from the sighting (capture) history sequences.
A difficulty in estimating transition probabilities from the capture history sequences such
as the ones available for the North Atlantic right whales comes from the fact that not all
individuals, even if they are still alive, are captured every year. If a capture history sequence
ends without capturing an individual for one or more sampling occasions, we do not know
whether the individual was dead or alive. It could have died immediately after the last
capture, it could have died later, or it may still be alive. Furthermore, if an individual
was not captured, we often do not have enough information to determine the stage of that
individual for sure.

Instead of assuming any particular whale is dead or alive, we modeled the capture history
sequence using both capture probabilities pgt), which give the probability of capturing an

individual that is in stage  in year t, and transition probabilities ¢g). With the capture and
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transition probabilities, we calculated the sum of the probabilities of every possible sequence
of events that was compatible with a given capture history to obtain the probability of that
capture history. The produ;:t of all the capture history probabilities was reinterpreted as
a likelihood. Finally a maximum likelihood method was applied to estimate the transition
probabilities as well as the capture probabilities (see Nichols et al., 1992b, also Chapter 2).

Major assumptions of the multi-stage mark-recapture method in general include (1)
individuals within the same stage make transitions into another stage independently but
based on the same probability and (2) marked individuals within the same stage are captured
independently but based on the same probability. However, we do not assume that any
particular whale is dead or alive, nor do we assume that unmarked individuals have the
same capture probability as marked individuals. For the right whale study in particular, we
also assume that (1) when the stage of an individual is unknown, it is immature or mature
with equal probability, (2) when the sex of an individual is unknown, it is female or male
with equal probability, and (3) the capture probability of a dead individual is 0. These

assumptions are incorporated into the likelihood using the method described in Chapter 2.

6.2.4 Parameters to be estimated

Figure 6.2 shows a complete transition graph of the North Atlantic right whale. This
transition graph includes male stages and another stage for death. Stages in this transition
graph correspond to the stages we assigned to the sighted individuals. Each arrow indicates
all possible stage transitions (including death) of individuals from one year to the next and
has associated transition probability gbg). Once we estimate the transition and capture
probabilities associated with this transition graph, we can use the transition probabilities
associated with female stages to construct the population projection matrix (Equation 6.2).
We let the survival probability of calves between females and males to be the same, and we
need male data to estimate this probability. Because of this assumption, we still need to
estimate parameters associated with males.

From the 19 year capture history sequences, we estimated parameters that define transi-
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tion and capture probabilities. The transition graph in Figure 6.2 contain 8 live stages and
19 possible stage transitions. If all probabilities were free to vary from one year to the next,
there would be about 300 parameters to estimate. The number of parameters, however,
can be reduced by making reasonable assumptions about how the probabilities are related

among stages and on how they change with time.

Female

AN
.

Figure 6.2: Stage transition graph of the North Atlantic right whales: 0: deaths, 1: calves,
2: immature females, 3: mature females, 4: mothers, 5: mature females during a year after
the mother stage, 6: immature males, 7: mature males
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Capture probability model

To reduce the number of parameters associated with capture probabilities, we éssumed
that they change freely from one year to the next but are correlated between stages. Let
©® be the logistic transform of the capture probability of mature females (stage 3) (i.e.
o) = log %3%—)). We let logistic transforms of capture probabilities of other stages to

be linear functions of ©® (i.e. ¥; + w;p®) = log 1—3;%%;). After we transform ¢® and the

functions back to probabilities, we obtain the following statistical model:

®

p3(t) -f—‘f(ep—x(p(p(;(%’ (6.4)
) o)

pi(t) = exp (i + wip'®) for i#1 or 3, (6.5)

1+ exp (i + wip®)

where t is year (for capture probability ¢ = 1981,...,1998), and ¢, ;, and w; are parame-
ters to be estimated. Equation (6.4) is a logit function with a different parameter for each
year. Equation (6.5) is a logistic function with ¢ as a covariate. In this equation, 9; is an
intercept and w; is a slope parameter. Because the capture probabilities other than mature
females are expressed only with two parameters ¢; and w;, this model reduces the number
of parameters.

We used stage 3 (mature female) as a reference stage, for which one parameter is es-
timated for each year (see equation (6.4)), because the data contain this stage the most.
The rest of stages use the parameters in equation (6.4) as a covariate. This model does not
include the capture probability of calves. It is not needed for estimating transition proba-
bilities because mark-recapture statistics are conditional on marking of animals. Capturing
of calves always occurs at the very first capture (i.e. marking) of the individuals.

The resulting capture probability model contains 28 parameters to be estimated. We

used this model for all of the analyses presented in this paper.

103




Transition probability models

In the current study, we focus on modeling the reproductive rate and the stage specific
survival probability of calves and mothers. A previous study in Chapter 5 has shown that
the survival probability of mothers and calves has declined significantly over time; on the
other hand, the survival probability of other stages remained constant. The same study
has also concluded that the survival probability of individuals averaged over all stages in
Caswell et al. (1999) is significantly correlated with the NAO index that is lagged by 2
years. Furthermore, Pershing & Greene (2002) have shown that reproductive rate of the
population has been significantly correlated with the same NAO index. Therefore, we model
transition probabilities incorporating the trend associated with time and the NAO index.
In ordef to model the reproductive rate and the survival probability of mature fe-
males separately, we decomposed the transition probability ¢E§ into a stage-specific sur-
vival probability and a transition probability conditional on the survival of individuals (i.e.
¢4(1§) = 33 (t)) We call the latter a conditional transition probability, and these two proba-
bilities are denoted by s(t) and tfl3) , respectively. The stage-specific survival probability gives
the probability of individuals in stage 3 at year t surviving to the following year, and the
conditional transition probability gives the probability that individuals in stage 3 in year ¢
will be in stage 4 in the following year conditional on the individuals survival through the

year. The relationship between ¢g) and these two probabilities are

88 = 1-s9, (6.6)
¢ = )(l—t(t)), (6.7)

In the above formulation, t( )isa probability of mature females giving birth conditional on
their survival. Thus it gives the reproductive rate of mature females.

The reproductive rate (t4)) and the survival probabilities of calves (s g?) and
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mothers (s,(f) = gbéz)) are modeled with logistic functions of two covariates:

H = %P (a1 + 4 + ney) (6.9
si(t) = ©) O 9
1+ exp (o + ficy” +mecy’)
(t) (t)
salt) exp (a2 + Bacy” +7265") (6.10)

1-+exp (az + ﬂzcgt) )’
tas(t) = exp (03 + ﬂscgt) i Vscg)) (6.11)
1 +exp(as+ ﬁ3c§t) + ’)’3C§t)) ’

(®)

t
g) and ¢y’ are values of

where t is year (for transition probabilities ¢ = 1980,...,1997), c
the winter NAO index (December of year ¢ — 3 to March of year ¢ — 2) and a time index
(0, 117, —12—7, . 5—'—}%, ..., 1) for year t, oy (k = 1,2,3) is an intercept parameter, and S and
v are slope parameters associated with the covariates. By setting some or all of f; and ¢
to zeros, we constructed 64 models that differ in the dependency of the probabilities on the
two covariates.

To be consistent with the transition probability of mature females, we also decompose
the transition probabilities of immature stages (stage 2 and 6) into stage-specific survival
probabilities (s, and sg) and conditional transition probabilities (32 and t76). However,
these probabilities along with the survival probabilities of mature females and males are
assumed to be constant over time. For each constant probability, its logistic transform was
estimated as a parameter.

We fitted the 64 models to the capture history sequences, calculated AIC for each model,

and compared the AIC values to select the best fit model.

Saturated model

In addition to the 64 models, we also used another model in which all transition probabilities
vary freely from one year to the next. We call this model a saturated model. This model
contains a total of 184 parameters (156 are associated with transition probabilities, 27 are
associated with capture probabilities, and 1 is a confounded parameter that is a product

of stage-specific survival probability from 1997 to 1998 and capture probability of mature
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females in 1998).

We assume that any deviations from the best models among the 64 models are resulting
from effects of environmental variability. And we used the saturated model to calculate

deviations in parameter values due to the environmental stochasticity.

6.3 Results

6.3.1 Model selection

From the 64 models, we select the best model that optimize the errors of over-fitting by
including too many parameters and under-fitting by over-simplifying models. This model
selection was done using Akaike information criteria (AIC) (Burnham & Anderson, 1998).
AIC is an index for weight of evidence in the data that a corresponding model is the best
model among the ones compared. AIC values associated with 64 models were transformed
into Akaike weights, which are the normalized AIC indices aso that they sum to 1. Using
the index, we chose the 10 best models (Table 6.3.1). In the same table, I also show the
difference between AIC for each model and one associated with the best model (i.e. A

AIC). The best and the second best models are supported almost equally at 0.27 and 0.25,

Table 6.1: Akaike weight for the 10 best models. |/ indicates that the model include the
corresponding covariate (time or NAO index).

Model | Akaike | A AIC | Calf Survival | Mother Survival | Reproduction

Weight NAO | Time | NAO Time | NAO | Time
M 0.27 0 Vv 4 Vv Vv
M, 0.25 0.18 v Vv 4 Vv
M;3 0.15 1.24 Vv Vv Vv Vv N4
M,y 0.10 2.06 v v Vv Vv Vv
M;s 0.07 2.78 v Vv Vv Vv Vv
Ms 0.05 347 v v Vv Vv V4 Vv
M; 0.03 4.50 4 4 Vv
Mg 0.02 5.29 Vv V4
My 0.02 5.30 Vv Vv V4
Mjio 0.01 6.40 v Vv Vv V4
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respectively. In both models, the survival probability of mothers is correlated with NAO
and the reproductive rate is correlated with both the time and NAO indices. However,
these models differ in how survival probability of calves changes over time. The best model
suggests that the survival probability depends on the time index and is monotonically
declining, but the second model predicts that the survival probability is correlated with the
NAO index.

The AAIC values for the first six models in Table 6.3.1 are less than 4 suggesting
these models deserve our attention (Burnham & Anderson, 1998). In all six models, the
reproductive rate is correlated with the NAO index indicating that there is a strong evidence
in the data that the environmental forcing is influencing right whale reproduction. In the six
models, the reproductive rate depends on the time index in addition to the NAO index, and
the slope parameter associated with the time index in these models is negative. Therefore,
the data also suggest that the reproductive rate has been declining over time independent
of the effect of NAO. Finally, these models have survival probability of mothel'rs that depend
on NAO:; there is evidence that environmental forcing is acting on the survival probability
of mothers.

The AAIC values for the first three models in Table 6.3.1 are less than 2; so there is
not strong evidence to exclude these models from potentially the best model in the data
(Burnham & Anderson, 1998). Therefore, the rest of our analyses focuses on these models
separately and compares the results to find the influence of model selection uncertainty. We

denote these three statistical models by Mj, M, and M3 as indicated in Table 6.3.1.

6.3.2 Estimated probabilities
Capture probability model

Figure 6.3 shows the estimated stage-specific capture probabilities of the three best models;
they are almost identical. This suggests that the capture probability estimates are not
affected by the differences in transition probability models. The capture probability of all

stages appears to have increased over the course of the study. This reflects the fact that
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Figure 6.3: Stage-specific capture probabilities: (a) female under Mj, (b) female under
M3, (c) female under M3, (d) male under M, (e) male under Ms, and (f) male under M3
(triangles, juvenile; circles, mature; diamonds, mother; stars, year after the mother stage).
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the sampling effort has increased (see Chapter 5). Compared with other stages, the capture
probability of mothers is very high and close to 1 (except in some early years). This indicates
that mothers are easier to observe than other stages, or the sampling program is particularly
effective for detecting them. The capture probabilities of mature females during the year
immediately after the mother stage and other years (stage 5 and 3, respectively) appear to
be different. A likelihood ratio test indicates that this difference is significant. Individuals
in stage 3 are available for reproduction in the following year, but those in stage 5 are not
because of reproduction in the previous year. This difference could influence the behavior
of females and affect the capturability of the individuals. All mature females (stage 3 and
5) are assumed to have the same capture probability in the previous study in Chapter 5;
this difference in the capture probability could have caused slight underestimation of the

previous estimate of survival probability of mothers (stage 4).

Transition probability models

Figure 6.4 shows estimated stage-specific survival probabilities. The survival probabilities of
calves are different among the three models. In the first model (M;), the survival probability
is negatively correlated with the NAO index. Because the index has a slightly increasing
trend over time, the survival probability also has a slightly declining trend. In the second
model (M), the survival probability has a monotonically declining trend. In the third
model (Mj3), the calf survival is a function of NAO only. We do not have enough data
to test whether the survival probability of calves is significantly correlated with the NAO
index or not; however, the three models suggest that there is at least a slightly declining
trend.

The survival probabilities of mothers in the best (M) and the second best (M3) models
decline monotonically with time. The same trend was also found in Chapter 5. On the other
hand, the survival probability of mothers in the third model (M3) is negatively correlated
with both the time and NAO indices. This model shows that the survival probability in

1996 was dramatically low. The fact that there were unusually high observed mortalities in
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Figure 6.4: Stage-specific survival probabilities: (a) female under M, (b) female under Mp,
(c) female under M3, (d) male under M, (€) male under Ma, and (f) male under M3. The
curves are for calves (squares), juvenile (triangles), mature (circles), mother (diamonds),
and year after the mother stage (stars).
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the winter of 1996 (Waring et al., 1999) indicates that model M3 may be more accurately
reflecting the true state of the population. In all three models, the survival probability of
mothers is declining. This decline is significant because the slope parameters associated
with time (72 in equation (6.10)) in all three models are significantly less than 0 based on
the likelihood ratio tests.

Figure 6.5 shows estimated conditional transition probabilities from stage 3 to stage
4 of the three best models. The conditional transition probability gives the probability of
mature females becoming mother provided they survive until the following year. In all three
models, the probability is correlated with both the NAO and time indices. This result is
consistent with the previous studies by Knowlton et al. (1994); Pershing & Greene (2002).
This suggests there is declining trend in the reproductive rate upon which the effect of

climate fluctuations are superimposed.

6.3.3 Uncertainty in parameter estimates

The estimated probabilities in the previous section have associated uncertainties that we
would like evaluate in terms of some indicator of population health. With a lack of an
universal indicator, we use the asymptotic annual population growth rate (A\) as a proxy
for population health.

We drew the parameters associated with the stage-specific survival probabilities and
conditional transition probabilities from a multivariate normal distribution. The covari-
ance matrix for the distribution was approximated by the inverse of the Hessian matrix
calculated at the last iteration in the numerical maximum likelihood method (see Burnham
et al., 1987). The simulated parameters were transformed into the stage-specific survival
probabilities and the conditional transition probabilities setting the NAO index to the mean
value between 1980 to 1997 and the time to be 1 (i.e. the level in 1997) in equations (6.9)-
(6.11). By setting the NAO index to the mean value, we removed the variability associated
with the index. By setting the time to the 1997 level, we assume that mean environmental

conditions remain at 1997 levels in future years. With these probabilities, we constructed
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Figure 6.5: Conditional transition probabilities t43 under M; (a), Mz (b), and M; (c)-
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a population projection matrix. From the matrix, we calculated an asymptotic population
growth rate ()), which is given by the dominant eigenvalue of the projection matrix (see
Caswell, 2001). This was repeated 1000 times for each of the three models selected in the
previous section.

The result shows that there are 79% (M), 86% (M), and 81% (M3) chances that the
asymptotic population growth rate (A) is less than 1. When A was less than 1, we calculated
the quasi-extinction time (r4). Here, we define the quasi-extinction time to be the time that
it takes a population to be reduced from 150 females distributed according to stable stage

distribution to a single female. The quasi-extinction time (74) was calculated as

. log(1/150)

= = 6.12
¢ log A ( )

Figure 6.6 shows the distribution of the quasi-extinction time (74) conditional on X <1
This figure shows that there is a wide range in 7. It also shows that when the population
goes extinct, it disappears relatively quickly. In fact, of the 1000 simulations (including the
cases in which A > 1 and A < 1), there is 50% chance of the population going extinct within

236 (M), 209 (Mz), and 176 (Ms3) years.

6.3.4 Environmental Stochasticity

The quasi-extinction time calculation in the previous section assumes a deterministic change
in the population size and does not include any environmental stochasticity. However,
populations live in stochastic environments, and we would like to assess the effect of this
stochasticity on population health. Here, we analyze the effect of adding variability to the
mean stage-specific survival and conditional transition probabilities in the previous section.

The variability in the probabilities (both stage-specific survival probabilities and the
conditional transition probabilities) due to environmental stochasticity was approximated
by the deviations in saturated models, in which probabilities change freely from one year

to the next, from one of the three best models (My, Ma, and Ms). First, we calculated the
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Figure 6.6: Distributions of quasi-extinction time showing parameter uncertainty under
M, (a), M (b), and M3 (c). Parameters generated with estimated means and associated
covariance matrix assuming their multivariate Normal distribution.
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probabilities using the parameters estimated with the saturated model. We also calculated
the probabilities using the parameters estimated with one of the three models using the
mean NAO index but the time index changing with time in equations (6.9)-(6.11). Then we
subtracted these probabilities from the corresponding probabilities of the saturated model to
calculate the deviations. Finally, these deviations were added to the probabilities calculated
using parameters of the same model (i.e. one of the three best models) but setting the NAO
and time indices to the mean and the 1997 level, respectively. This resulted in 17 values for
each probability. Two of the values associated with ¢34 in each model were negative; they
were set to 0. Using these probabilities, we constructed 17 population projection matrices.

The 17 matrices approximate the variability in a population projection matrix around
the matrix that would have been expected in the environmental condition of 1997 but
under the average climate level. It should be noted that we did not subtract the sampling
variations from the estimates. Therefore, the 17 matrices are over-estimating the variability
due to environmental stochasticity.

Using the 17 population projection matrices, we calculated the cumulative probability
density for time to quasi-extinction assuming the changes in log of the total population size
are approximated by a diffusion process (e.g. Caswell, 2001; Dennis et al., 1991). For this
calculation, the stochastic growth rate was calculated from a population growth rate of the
average matrix using the approximation developed by Tuljapurkar (1990) and the diffusion

coefficient (0%) was approximated by
o? = 2(log 1 — 108 As), (6.13)

where log i is the population growth rate of the average matrix and log A, is the stochastic
population growth rate.

The mean deviations added to all stage-specific survival probabilities in all three models
except the one for survival probability of mothers in M3z were negative. Therefore, by

adding the deviations, we reduced the survival probabilities on average. Paradoxically,
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the deterministic growth rate of the projection matrix averaged over the 17 matrices was
higher than the deterministic growth rate of the matrix before adding the environmental
variability. As a result, the quasi-extinction time calculated using equation (6.12) increased
from 361 based on the mean estimates for 1997 to 447 based on the average of the 17
matrices constructed using M; as the trend model, from 354 based on the mean estimates
for 1997 to 437 based on the average of the 17 matrices constructed using M, as the trend
model, and from 196 based on the mean estimates for 1997 to 248 based on the average
of the 17 matrices constructed using M3 as the trend model. This effect comes from the
skewed distributions of the survival probabilities and the negative mean deviations added
to t43. When t43 is reduced, fewer individuals make the transition into the mother stage in
which individuals face higher risk of mortality.

Figure 6.7 shows the cumulative probability density for quasi-extinction. In each figure,
the vertical line on the left indicates the median time to the quasi-extinction and the line
on the right indicates the quasi-extinction time calculated using the deterministic model

(equation (6.12)). These two values are close to each other in all models.

6.3.5 Demographic stochasticity

The extinction calculations so far do not include the effect of the small population size
(i.e. demographic stochasticity). In this section, we analyze this effect on the population
viability. Changes in population size are determined by the fates of individuals; those fates
are determined stochastically. For example, with some probability each individual survives
or die, and with some probability an individual makes a transition into a different stage or
remains in the same stage; these stochasticities occur even if the environment is constant.
When population size is large, the effect of these events are averaged over many individuals,
and as a result, the population size changes smoothly. However, when the population size
is small, the fate of each individual has a magnified effect on the total population size. This
is called demographic stochasticity.

The effect of demographic stochasticity on the viability of the North Atlantic right
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Figure 6.7: Cumulative probability density for quasi-extinction time showing the effect
of environmental stochasticity under M; (a), Mz (b), and M3 (c). The left vertical line
shows median, and the right vertical line shows quasi-extinction time calculated under the
deterministic model. (see text for the method)
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whales has been analyzed in Chapter 5. Here, we repeat the same analyses based on the
new estimates. For this analysis, we used the average matrix used in the previous section.
These estimates were analyzed using the multi-type branching process (see Caswell, 2001).

Figure 6.8 shows the cumulative probability density for the extinction time. As in the
previous section, the vertical line on the left is the median time to extinction, and the
vertical line on the right is the quasi-extinction time based on the deterministic calculation
(equation 6.12). It should be noted that we are calculating the time to extinction (not quasi-
extinction) using the branching process calculation. The extinction time is defined here as
the time it takes a population consisting of 150 females distributed according to stable stage
distribution to completely disappear. Even the comparison of the quasi-extinction and the
extinction times, it is clear that there is a larger effect of the demographic stochasticity on

the population viability than the environmental stochasticity.

6.3.6 Environmental and demographic stochasticity

After the separate analyses of environmental and demographic stochasticities, the next
obvious step is to analyze the combined effects on the population viability. When both
environmental stochasticities and demographic stochasticities are combined, there is no
practical analytical method to calculate the extinction time. So we rely on simulations.
We started the population with 150 females distributed according to the stable stage
distribution of the average matrix in the previous section. Then for each year, we randomly
selected one of the 17 matrices with equal probabilities. Using the selected matrix, we
projected the number of individuals in the ith stage in time ¢ + 1 coming from stage j
in year ¢ assuming multinomial distributions with the number of individuals in stage j
in year t and probabilities ¢;; as parameters. This was repeated for all stages for each
year of projection. The number of calves in year t + 1 was calculated using the binomial
distribution with the number of individual in mature stage (stage 3) in year y and F3 as
parameters. The population projection was repeated until the population goes to quasi-

and actual extinction, and the years of these extinction events were noted. This process
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Figure 6.8: Cumulative probability density for quasi-extinction time showing the effect
of demographic stochasticity under M; (a), M, (b), and Mj (c). The left vertical line
shows median, and the right vertical line shows quasi-extinction time calculated under the
deterministic model. (see text for the method)
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was repeated for 500 times using the parameter estimates of each model.

Figure 6.9 shows 50 randomly selected simulation paths of the total population size.
The solid lines in the figures indicate the deterministic path of the population size. Figure
6.10 shows the distributions of actual extinction time. As expected, the combination of
demographic and environmental stochasticities creates a range of projected extinction times.

The above simulation assumes that mature females giving birth and making transi-
tion into the mother stage are independent. This assumption was also made in all of the
calculations so far. However, in reality, every individual that makes the transition from
mature to mother stage also gives birth. Thus the reproduction and transition are corre-
lated. Although incorporating this correlation in the diffusion approximation model and
the branching process calculation is difficult, it can be incorporated easily in a simulation.
Therefore, we repeat the same simulation as before but calculating the number of calves
in year y + 1 differently to account for the correlation. In this calculation, when individ-
uals made the transition from mature (stage 3) to mother (stage 4) stages, we used the
binomial distribution with number of individuals that made the transition and 0.5¢54%° as
parameters to decide how many individuals appear as calves in the following year.

Assuming the independence between the reproduction and the transition, the median
times to quasi-extinction were 317 (M), 315 (Mz), and 194 (M3) years, and the median
times to actual extinction were 355 (M), 352 (M2), and 217 (M3) years. However, when
we assume the correlation, the median times to quasi-extinction increase to 338 (Mi), 333
(M), and 201 (M3) years, and the median time to the extinction increase to 380 (Mh),
377 (M), and 229 (M3) years. These increases result from the fact that individuals in
the mother stage have very low survival probability compared with other stages. If the
probability of individuals risking into the mother stage and reproduction are correlated,
there is a less chance that mothers die without giving birth and a higher chance that the
population size does not decline. We have not included the correlation between survival of
mothers and calves in our model. The right whale mothers nurse their calves for almost a

year. It is very likely that calves die if mothers die. This correlation would have an opposite
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Figure 6.9: Stochastic simulations of the total population size with both environmental and
demographic stochasticity under M; (a), M2 (b), and M3 (c). 50 randomly selected paths
are shown. The simulation does not assume the correlation between transition into the
mother stage and fertility. The solid line is a path of the deterministic model.
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Figure 6.10: Distribution of quasi-extinction time showing the effect of both environmental
and demographic stochasticity under M; (a), Mz (b), and M3 (c). The simulation does not
assume the correlation between transition into the mother stage and fertility.

122



effect as the other correlation and reduce the time to extinction.

6.3.7 More simulations

We used three different analytical methods to calculate expected time to extinction (i.e.
deterministic, diffusion approximation, and branching process); however, the comparisons
of the results are not trivial. For example, the deterministic and diffusion approximation
methods calculate the time to quasi-extinction, but the branching process method calculates
the time to actual extinction. Furthermore, the three methods may have different implicit
assumptions or use approximations that may be sensitive to different factors. Theoretical
studies of these methods are beyond a scope of this study. Nevertheless, it would be nice
if we could compare the results based on the same method. Fortunately, the simulation
method used in the previous section also allows us to analyze environmental or demographic
stochasticity alone.

For the analysis of the demographic stochasticity alone, we used the method in the
previous section but only using the average matrix alone. Here we assumed no correlation
between the reproduction and the transition from mature to mother stage to be consistent
with the branching process calculation. Using this method, we calculated actual and quasi-
extinction time.

For the analysis of the environmental stochasticity alone, we randomly selected one of the
17 matrices in the previous section for each year. However, instead of using the multinomial
distribution to project the population in the following year, we multiplied the projection
matrix to a vector containing number of individuals in each stage (equation (6.2)). For
the initial population, we used 150 individuals distributed according to the stable stage
distribution of the average matrix. We repeated this process until the sum of the total
population size becomes 1. We noted this year as a quasi-extinction time. This process was
repeated 500 times for each model.

Table 6.3.7 summarizes all the extinction time calculations made in this paper. The

result shows that the analytical calculations using diffusion approximation and branching
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Table 6.2: Results of extinction time calculations

Method Type of Factors Median Years to Extinction
Extinction Analyzed M, M, Ms
Deterministic Quasti 447 438 248
Diffusion Process | Quasi ES 438 429 245
Branching Process | Actual DS 359 355 219
Simulation Quasi ES 437 430 250
Simulation Actual DS 359 357 224
Simulation Quasi DS 313 318 199
Simulation Quasi DS+ES 338 333 201
Simulation Actual DS+ES 380 377 229
Simulation Quasi DS+ES+CR 317 315 194
Simulation Actual DS+ES+CR 355 352 217

DS: demographic stochasticity.
ED: environmental stochasticity.
CR: correlation between reproduction and transition into mother stage.

process methods agree very well with the simulations. The comparisons of actual and quasi-
extinction times for the demographic stochasticity alone indicate that there is about 20 to

40 years difference between them.

6.4 Discussion

We analyzed the North Atlantic right whale data using 64 models that differ in hypotheses
on how reproductive rate and survival probability of calves and mothers changed over time.
Based on AIC, we selected the three statistical models that were supported by the data
best. According to these models, the survival probability of mothers has declined over
time and the reproductive rate of mature females has been correlated with the climate
index. The three models disagree on whether the survival probability of mothers has been
correlated with the climate index and also disagree on how the survival probability of calves
has changed over time. However, throughout the series of the population viability analyses
in this paper, results based on the three models did not give qualitatively different answers.

Based on the three models, we analyzed the uncertainties in parameter estimates using a
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parametric bootstrap method. For this purpose, we used an asymptotic population growth
rate ()) as an index. According to the analysis, all three models agree on a 80% chance
of extinction (A < 1) provided that climatic conditions are maintained at the mean level
between 1980 and 1997 and that other environmental conditions are maintained at the 1997
level in future years.

Using the estimates based on the three models, we analyzed the effects of environmental
and demographic stochasticity on the viability of the population. We used four different
methods to calculate the quasi-extinction and actual extinction times (Table 6.3.7). The
results reveal that there is little effect of environmental stochasticity on the median time
to quasi-extinction. The environmental stochasticity appears only to increase the range of
quasi-extinction time projections. Considering that North Atlantic right whales are long-
lived animals, and we are only adding noise at a small time-scale, this result is reasonable.
On the other hand, demographic stochasticity has much larger effects on population vi-
ability. Simulation results suggest that there is an 80 to 90% chance that demographic
stochasticity reduces the time to quasi-extinction, and there is a 20 to 30% reduction in
median time to quasi-extinction.

The North Atlantic right whale is seriously endangered not only because of its small
population size, but also because of the trend in the population growth rate (Caswell et al.,
1999, Chapter 5). Previous studies suggested that the population is now slowly declining.
In the current study, we analyzed the data on this population taking additional factors
into consideration. Those additional factors are model selection uncertainty, the effect of
environmental stochasticity, and some heterogeneity in the capture probability of mature
females. With all these factors considered, the results do not suggest a bright future for
this population.

Recently a few major management actions have been implemented. They include a
disentanglement network system, a mandatory ship reporting system, and a temporary
closure of areas from fishing activities (Waring et al., 1999). These management actions

were implemented in the mid to late 1990’s, and their effects will not be detectable for a
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few more years. Saving only a few whales will protect the population (Chapter 5). We hope
that these management actions are effective and that, in the future, we will be reporting

the effects of successful management on the viability of the North Atlantic right whales.
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Chapter 7

Conclusion

The main chapters (Chapters 2-6) were written for possible publications in journals, and
they contain conclusions of their own. Therefore, I present a brief overview of this thesis in
this chapter.

In this thesis, I presented new methods to analyze mark-recapture data (Chapters 2, 3,
and 4) and applications of the methods to actual data (Chapters 5 and 6). These methods
link m'ark—recapture data and existing population models that allow modern demographic
analyses (e.g. Caswell, 2001). I presented selected demographic analyses such as sensitiv-
ity, branching process, and environmental stochasticity analyses based on the estimated
parameters of the right whale models in Chapter 5 and 6. The study of the right whale
population presented in Chapter 5 revealed some interesting facts about the status of the
population. One of the most interesting findings is that the declining survival probability
found by Caswell et al. (1999) appears to be caused by the increased mortality rate of
females that are nursing their offspring. I believe that this and other results in the two
chapters demonstrate the usefulness of the mark-recapture methods presented in the earlier
chapters.

As marking techniques improve, individual mark-recapture data are becoming very com-
mon. Such data are already available for wandering albatross (Diomedia ezulans) and Am-
sterdam albatross (D. amsterdamensis) (Weimerskirch et al., 1997), Atlantic humpback

whales (Buckland, 1990), kittiwake gull (Rissa tridactyla) (Aebischer & Coulson, 1990),
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Canada geese (Branta canadensis) (Hestbeck et al., 1991), tundra swan (Cygnus columbi-
nus) (Nichols et al., 1992a), roseate tern (Sterna dougallii) (Spendelow et al., 1995), black-
headed gull (Larus ridibundus) (Prevot-Julliard et al., 1998), Florida manatee ( Trichechus
manatus latirostris) (Langtimm et al., 1998), pig frog (Rana grylio) (Wood et al., 1998),
Weddell seal (Leptonychotes weddellii) (Hastings & Testa, 1998), grizzly bear (Ursus arc-
tos) (Pease & Mattson, 1999), grey seal (Halichoerus grypus) (Schwarz & Stobo, 2000), and
northern spotted owl (Striz occidentalis caurina) (Franklin et al., 2000) to name some exam-
ples. The methods I presented allow reanalysis of these existing data taking full advantage
of the demographic analyses and also allow planning of future sampling.

I here show that mark-recapture data contain a great deal of information. They are
one of the best data to collect when studying a population. I was able to find a change
in survival probability in only one life stage of individuals in a population that consists of
about 300 individuals. This discovery would not have been possible if there were not the
mark-recapture data and the appropriate analysis method presented in this thesis. However,
mark-recapture data are not always available. One obvious limitation of the method is that
individuals must be uniquely marked. When individuals cannot be marked, an alternative
type of data is count data, which record how many individuals in each stage were observed
at each sampling occasion. Recently, Zeng et al. (1998) and DeValpine & Hastings (2002)
developed a method to estimate population parameters by fitting state-space models to
count data. Because count data are easier to collect and more available than mark-recapture
data, I suspect their method will become very important in ecological studies. However, I
am not sure which type of data are superior given the same amount of sampling effort. 1
think the answer will depend on the size of a population and detectability of individuals (i.e.
capture probability). It is also conceivable to collect both mark-recapture and count data
on the same population. Then a single likelihood function for both data can be expressed
to estimate parameters. Under such circumstance, I am interested to find what is the best
allocation of effort between the two types of data.

Collecting data in a population study, whether they are mark-recapture data or count
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data, is often an expensive process. The cost of the collecting data should warrant the most
sophisticated analyses available. Once data are collected, they should be analyzed to a full
extent. Unfortunately, ecological data are often under-utilized. In my opinion, this comes
from the lack of emphasis in studies that try to link data and models. This is the area in
which I am hoping to make contributions as an ecologist /biological oceanographer. This

thesis is the first of such contributions.
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